PCMRS {PCMRS} | R Documentation |
Model Response Styles in Partial Credit Models
Description
Performs PCMRS, a method to model response styles in Partial Credit Models
Usage
PCMRS(
Y,
Q = 10,
scaled = TRUE,
method = c("L-BFGS-B", "nlminb"),
cores = 30,
lambda = 0
)
Arguments
Y |
Data frame containing the ordinal item response data (as ordered factors), one row per obeservation, one column per item. |
Q |
Number of nodes to be used (per dimension) in two-dimensional Gauss-Hermite-Quadrature. |
scaled |
Should the scaled version of the response style parameterization be used? Default is |
method |
Specifies optimization algorithm used by |
cores |
Number of cores to be used in parallelized computation. |
lambda |
Tuning parameter for optional L2 penalty on coefficient vector (for stabilized estimation) |
Value
delta |
Matrix containing all item parameters for the PCMRS model, one row per item, one column per category. |
Sigma |
2*2 covariance matrix for both random effects, namely the ability parameters theta and the response style parameters gamma. |
delta.PCM |
Matrix containing all item parameters for the simple PCM model, one row per item, one column per category. |
sigma.PCM |
Estimate for variance of ability parameters theta in the simple PCM model. |
Y |
Data frame containing the ordinal item response data, one row per obeservation, one column per item. |
scaled |
Logical, |
neg.loglik |
Negative marginal log-likelihood |
Author(s)
Gunther Schauberger
gunther.schauberger@tum.de
https://www.sg.tum.de/epidemiologie/team/schauberger/
References
Tutz, Gerhard, Schauberger, Gunther and Berger, Moritz (2018): Response Styles in the Partial Credit Model, Applied Psychological Measurement, https://journals.sagepub.com/doi/10.1177/0146621617748322
See Also
person.posterior
PCMRS-package
Examples
## Not run:
################################################
## Small example to illustrate model and person estimation
################################################
data(tenseness)
set.seed(5)
samples <- sample(1:nrow(tenseness), 100)
tense_small <- tenseness[samples,1:4]
m_small <- PCMRS(tense_small, cores = 2)
m_small
plot(m_small)
persons <- person.posterior(m_small, cores = 2)
plot(jitter(persons, 100))
################################################
## Example from Tutz et al. 2017:
################################################
data(emotion)
m.emotion <- PCMRS(emotion)
m.emotion
plot(m.emotion)
## End(Not run)