PCMMeanAtTime {PCMBase} | R Documentation |
Calculate the mean at time t, given X0, under a PCM model
Description
Calculate the mean at time t, given X0, under a PCM model
Usage
PCMMeanAtTime(
t,
model,
X0 = model$X0,
regime = PCMRegimes(model)[1L],
verbose = FALSE
)
Arguments
t |
positive numeric denoting time |
model |
a PCM model object |
X0 |
a numeric vector of length k, where k is the number of traits in the model (Defaults to model$X0). |
regime |
an integer or a character denoting the regime in model for which to do the calculation; Defaults to PCMRegimes(model)[1L], meaning the first regime in the model. |
verbose |
a logical indicating if (debug) messages should be written on the console (Defaults to FALSE). |
Value
A numeric vector of length k
Examples
# a Brownian motion model with one regime
modelBM <- PCM(model = "BM", k = 2)
# print the model
modelBM
# assign the model parameters at random: this will use uniform distribution
# with boundaries specified by PCMParamLowerLimit and PCMParamUpperLimit
# We do this in two steps:
# 1. First we generate a random vector. Note the length of the vector equals PCMParamCount(modelBM)
randomParams <- PCMParamRandomVecParams(modelBM, PCMNumTraits(modelBM), PCMNumRegimes(modelBM))
randomParams
# 2. Then we load this random vector into the model.
PCMParamLoadOrStore(modelBM, randomParams, 0, PCMNumTraits(modelBM), PCMNumRegimes(modelBM), TRUE)
# PCMMeanAtTime(1, modelBM)
# note that the variance at time 0 is not the 0 matrix because the model has a non-zero
# environmental deviation
PCMMeanAtTime(0, modelBM)
[Package PCMBase version 1.2.14 Index]