makeCalls.ihc {PCAPAM50} | R Documentation |
Make a Conventional PAM50 Intrinsic Subtype Calls
Description
This function processes clinical and preprocessed PAM50 expression data to form an estrogen receptor (ER)-balanced set based on IHC classification. The ER-balanced set is created by distinguishing between ER-negative and ER-positive cases, and it produces conventional PAM50 intrinsic subtype calls.
Usage
makeCalls.ihc(df.cln, seed=118, mat, inputDir=NULL)
Arguments
df.cln |
Data frame of clinical data; It should include the columns 'PatientID' and 'IHC'. |
seed |
Seed for random number generation to ensure reproducibility. Default is 118. |
mat |
Matrix of preprocessed PAM50 expression data. |
inputDir |
Directory for output files.If |
Value
Returns a list containing:
Int.sbs |
Data frame with integrated subtype and clinical data. |
score.fl |
Data frame with scores from subtype predictions. |
mdns.fl |
Data frame with median values for each gene in the ER-balanced set. |
SBS.colr |
Colors associated with each subtype from the prediction results. |
outList |
Detailed results from subtype prediction functions. |
See Also
Examples
data_path <- system.file("extdata", "Sample_IHC_PAM_Mat.Rdat", package = "PCAPAM50")
load(data_path) # Loads Test.ihc and Test.matrix
# Prepare the data
Test.ihc$ER_status <- rep("NA", length(Test.ihc$PatientID))
Test.ihc$ER_status[grep("^L",Test.ihc$IHC)] = "pos"
Test.ihc$ER_status[-grep("^L",Test.ihc$IHC)] = "neg"
Test.ihc <- Test.ihc[order(Test.ihc$ER_status, decreasing = TRUE),]
Test.matrix <- Test.matrix[, Test.ihc$PatientID]
df.cln <- data.frame(PatientID = Test.ihc$PatientID, IHC = Test.ihc$IHC, stringsAsFactors = FALSE)
# Call the function
result <- makeCalls.ihc(df.cln=df.cln, seed = 118, mat = Test.matrix, inputDir=NULL)