surrogate {PAsso} | R Documentation |
Surrogate response
Description
Simulate surrogate response values for cumulative link regression models using the latent method described in Liu and Zhang (2017).
Usage
surrogate(
object,
method = c("latent", "uniform"),
jitter.uniform.scale = c("probability", "response"),
nsim = 1L,
...
)
Arguments
object |
|
method |
Character string specifying which method to use to generate the
surrogate response values. Current options are |
jitter.uniform.scale |
Character string specifying the scale on which to perform
the jittering whenever |
nsim |
Integer specifying the number of bootstrap replicates to use.
Default is |
... |
Additional optional arguments. (Currently ignored.) |
Value
A numeric vector of class c("numeric", "surrogate")
containing
the simulated surrogate response values. Additionally, if nsim
> 1,
then the result will contain the attributes:
boot_reps
A matrix with
nsim
columns, one for each bootstrap replicate of the surrogate values. Note, these are random and do not correspond to the original ordering of the data;boot_id
A matrix with
nsim
columns. Each column contains the observation number each surrogate value corresponds to inboot_reps
. (This is used for plotting purposes.)
Note
Surrogate response values require sampling from a continuous distribution;
consequently, the result will be different with every call to
surrogate
. The internal functions used for sampling from truncated
distributions are based on modified versions of
truncdist:rtrunc
and truncdist:qtrunc
.
For "glm"
objects, only the binomial()
family is supported.
References
Liu, D., Li, S., Yu, Y., & Moustaki, I. (2020). Assessing partial association between ordinal variables: quantification, visualization, and hypothesis testing. Journal of the American Statistical Association, 1-14. doi: 10.1080/01621459.2020.1796394
Liu, D., & Zhang, H. (2018). Residuals and diagnostics for ordinal regression models: A surrogate approach. Journal of the American Statistical Association, 113(522), 845-854. doi: 10.1080/01621459.2017.1292915
Nadarajah, S., & Kotz, S. (2006). R Programs for Truncated Distributions. Journal of Statistical Software, 16(Code Snippet 2), 1 - 8. doi: 10.18637/jss.v016.c02
Examples
# Generate data from a quadratic probit model
set.seed(101)
n <- 2000
x <- runif(n, min = -3, max = 6)
z <- 10 + 3*x - 1*x^2 + rnorm(n)
y <- ifelse(z <= 0, yes = 0, no = 1)
# Scatterplot matrix
pairs(~ x + y + z)
# Setup for side-by-side plots
par(mfrow = c(1, 2))
# Misspecified mean structure
fm1 <- glm(y ~ x, family = binomial(link = "probit"))
s1 <- surrogate(fm1)
scatter.smooth(x, s1 - fm1$linear.predictors,
main = "Misspecified model",
ylab = "Surrogate residual",
lpars = list(lwd = 3, col = "red2"))
abline(h = 0, lty = 2, col = "blue2")
# Correctly specified mean structure
fm2 <- glm(y ~ x + I(x ^ 2), family = binomial(link = "probit"))
s2 <- surrogate(fm2)
scatter.smooth(x, s2 - fm2$linear.predictors,
main = "Correctly specified model",
ylab = "Surrogate residual",
lpars = list(lwd = 3, col = "red2"))
abline(h = 0, lty = 2, col = "blue2")
dev.off() # reset to defaults once finish