gsPEN_R {PANPRSnext} | R Documentation |
Run the gsPEN algorithm for multiple traits, without functional annotations.
Description
Run the gsPEN algorithm for multiple traits, without functional annotations.
Usage
gsPEN_R(
summary_z,
n_vec,
plinkLD,
n_iter = 100,
upper_val = NULL,
breaking = 1,
z_scale = 1,
tuning_matrix = NULL,
tau_factor = c(1/25, 1, 10),
len_lim_lambda = 10,
sub_tuning = 50,
lim_lambda = c(0.5, 0.9),
len_lambda = 200,
df_max = NULL,
sparse_beta = FALSE,
debug_output = FALSE,
verbose = FALSE
)
Arguments
summary_z |
A matrix of summary statistics for each SNP and trait. |
n_vec |
A vector of sample sizes for each of the Q traits corresponding to the Q columns of summary_z. |
plinkLD |
A matrix of LD values for each pair of SNPs. |
n_iter |
The number of iterations to run the algorithm. |
upper_val |
The upper bound for the tuning parameter. |
breaking |
The number of iterations to run before checking for convergence. |
z_scale |
The scaling factor for the summary statistics. |
tuning_matrix |
A matrix of tuning parameters. |
tau_factor |
A vector of factors to multiply the median value by to get the tuning parameters. |
len_lim_lambda |
The number of tuning parameters to use for the first iteration. |
sub_tuning |
The number of tuning parameters to use for the second iteration. |
lim_lambda |
The range of tuning parameters to use for the first iteration. |
len_lambda |
The number of tuning parameters to use for the second iteration. |
df_max |
The maximum degrees of freedom for the model. |
sparse_beta |
Whether to use the sparse version of the algorithm. |
debug_output |
Whether to output the tuning combinations that did not converge. |
verbose |
Whether to output information through the evaluation of the algorithm. |
Value
A named list containing the following elements: beta_matrix: A matrix of the estimated coefficients for each SNP and trait. num_iter_vec: A vector of the number of iterations for each tuning combination. all_tuning_matrix: A matrix of the tuning parameters used for each tuning combination.
Examples
# Load the library and data
library(PANPRSnext)
data("summaryZ")
data("Nvec")
data("plinkLD")
# Take random subset of the data
subset <- sample(nrow(summaryZ), 100)
subset_summary_z <- summaryZ[subset, ]
# Run gsPEN
output <- gsPEN_R(
summary_z = subset_summary_z,
n_vec = Nvec,
plinkLD = plinkLD
)