powen {OwenQ}R Documentation

Owen distribution functions when δ12

Description

Evaluates the Owen distribution functions when the noncentrality parameters satisfy δ12 and the number of degrees of freedom is integer.

Usage

powen1(nu, t1, t2, delta1, delta2, algo = 2)

powen2(nu, t1, t2, delta1, delta2, algo = 2)

powen3(nu, t1, t2, delta1, delta2, algo = 2)

powen4(nu, t1, t2, delta1, delta2, algo = 2)

Arguments

nu

integer greater than 1, the number of degrees of freedom; infinite allowed

t1, t2

two numbers, positive or negative, possible infinite

delta1, delta2

two vectors of possibly infinite numbers with the same length, the noncentrality parameters; must satisfy delta1>delta2

algo

the algorithm used, 1 or 2

Value

A vector of numbers between 0 and 1, possibly containing some NaN.

Note

When the number of degrees of freedom is odd, the procedure resorts to the Owen T-function (OwenT).

References

Owen, D. B. (1965). A special case of a bivariate noncentral t-distribution. Biometrika 52, 437-446.

See Also

Use psbt for general values of delta1 and delta2.

Examples

nu=5; t1=2; t2=1; delta1=3; delta2=2
# Wolfram integration gives 0.1394458271284726
( p1 <- powen1(nu, t1, t2, delta1, delta2) )
# Wolfram integration gives 0.0353568969628651
( p2 <- powen2(nu, t1, t2, delta1, delta2) )
# Wolfram integration gives 0.806507459306199
( p3 <- powen3(nu, t1, t2, delta1, delta2) )
# Wolfram integration gives 0.018689824158
( p4 <- powen4(nu, t1, t2, delta1, delta2) )
# the sum should be 1
p1+p2+p3+p4

[Package OwenQ version 1.0.7 Index]