LSfunctional {OrdMonReg} | R Documentation |
Compute least squares criterion for two ordered isotonic regression functions
Description
Computes the value of the least squares criterion in the problem of two ordered isotonic regression functions.
Usage
LSfunctional(f1, g1, w1, f2, g2, w2)
Arguments
f1 |
Vector in |
g1 |
Vector in |
w1 |
Vector in |
f2 |
Vector in |
g2 |
Vector in |
w2 |
Vector in |
Details
This function simply computes for the above vectors
L(f1, f2) \ = \ \sum_{i=1}^n w1_i(f1_i - g1_i)^2 + \sum_{i=1}^n w2_i(f2_i - g2_i)^2.
Author(s)
Fadoua Balabdaoui fadoua@ceremade.dauphine.fr
http://www.ceremade.dauphine.fr/~fadoua
Kaspar Rufibach (maintainer) kaspar.rufibach@gmail.com
http://www.kasparrufibach.ch
Filippo Santambrogio filippo.santambrogio@math.u-psud.fr
http://www.math.u-psud.fr/~santambr/
References
Balabdaoui, F., Rufibach, K., Santambrogio, F. (2009). Least squares estimation of two ordered monotone regression curves. Preprint.
See Also
This function is used by BoundedAntiMeanTwo
.