ordFacRegCox {OrdFacReg}R Documentation

Compute Cox-regression for ordered predictors

Description

This function computes estimates in Cox-regression where coefficients corresponding to dummy variables of ordered factors are estimated to be in non-decreasing order and at least 0. An active set algorithm as described in Duembgen et al. (2007) is used.

Usage

ordFacRegCox(ttf, tf, Z, fact, ordfact, ordering = NA, intercept = TRUE, 
    display = 0, eps = 0)

Arguments

ttf

Survival times.

tf

Censoring indicator (1 = event, 0 = censored).

Z

Matrix of predictors. Factors are coded with levels from 1 to jj.

fact

Specify columns in ZZ that correspond to unordered factors.

ordfact

Specify columns in ZZ that correspond to ordered factors.

ordering

Vector of the same length as ordfact. Specifies ordering of ordered factors: "i" means that the coefficients of the corresponding ordered factor are estimated in non-decreasing order and "d" means non-increasing order. See the examples in ordFacReg for details.

intercept

If TRUE, an intercept (= column of all 1's) is added to the design matrix.

display

If display == 1 progress of the algorithm is output.

eps

Quantity to which the criterion in the Basic Procedure 2 in Duembgen et al. (2007) is compared.

Details

For a detailed description of the problem and the algorithm we refer to Rufibach (2010).

Value

L

Value of the criterion function at the maximum.

beta

Computed regression coefficients.

A

Set AA of active constraints.

design.matrix

Design matrix that was generated.

Author(s)

Kaspar Rufibach (maintainer)
kaspar.rufibach@gmail.com
http://www.kasparrufibach.ch

References

Duembgen, L., Huesler, A. and Rufibach, K. (2010). Active set and EM algorithms for log-concave densities based on complete and censored data. Technical report 61, IMSV, Univ. of Bern, available at http://arxiv.org/abs/0707.4643.

Rufibach, K. (2010). An Active Set Algorithm to Estimate Parameters in Generalized Linear Models with Ordered Predictors. Comput. Statist. Data Anal., 54, 1442-1456.

See Also

ordFacReg computes estimates for least squares and logistic regression.

Examples


## ========================================================
## Artificial data is used to illustrate Cox-regression.
## ========================================================

## --------------------------------------------------------
## initialization
## --------------------------------------------------------
set.seed(1977)
n <- 500
Z <- NULL
intercept <- FALSE

## --------------------------------------------------------
## quantitative variables
## --------------------------------------------------------
n.q <- 2
if (n.q > 0){for (i in 1:n.q){Z <- cbind(Z, rnorm(n, rgamma(2, 2, 1)))}}

## --------------------------------------------------------
## unordered factors
## --------------------------------------------------------
un.levels <- c(8, 2)[2]
for (i in 1:length(un.levels)){Z <- cbind(Z, sample(round(runif(n, 0, 
    un.levels[i] - 1)) + 1))}
fact <- n.q + 1:length(un.levels)

## --------------------------------------------------------
## ordered factors
## --------------------------------------------------------
levels <- c(4, 5, 10)
for (i in 1:length(levels)){Z <- cbind(Z, sample(round(runif(n, 0, 
    levels[i] - 1)) + 1))}
ordfact <- n.q + length(un.levels) + 1:length(levels)

## --------------------------------------------------------
## generate response
## --------------------------------------------------------
ttf <- rexp(n)
tf <- round(runif(n))

## --------------------------------------------------------
## generate design matrix
## --------------------------------------------------------
Y <- prepareData(Z, fact, ordfact, ordering = NA, intercept)$Y

## --------------------------------------------------------
## compute estimates
## --------------------------------------------------------
res1 <- eha::coxreg.fit(Y, Surv(ttf, tf), max.survs = length(tf), 
    strats = rep(1, length(tf)))$coefficients
res2 <- ordFacRegCox(ttf, tf, Z, fact, ordfact, ordering = NA, 
    intercept = intercept, display = 1, eps = 0)
b1 <- matrix(res1, ncol = 1)
g1 <- coxDeriv(b1, ttf, tf, Y)$dL
b2 <- res2$beta
g2 <- coxDeriv(b2, ttf, tf, Y)$dL
Ls <- c(coxLoglik(b1, ttf, tf, Y)$L, res2$L)
names(Ls) <- c("MLE", "ordFact") 
disp <- cbind(1:length(b1), round(cbind(b1, g1, cumsum(g1)), 4), 
    round(cbind(b2, g2, cumsum(g2)), 4))

## --------------------------------------------------------
## display results
## --------------------------------------------------------
disp
Ls

[Package OrdFacReg version 1.0.6 Index]