Fx_survival {OptimalDesign} | R Documentation |
Matrix of candidate regressors for a survival model
Description
Creates the matrix of all candidate regressors for a linearization of a proportional hazards survival model.
Usage
Fx_survival(formula, theta0, censor.time, survival.model="phI", lower=NULL,
upper=NULL, n.levels=NULL, echo=TRUE)
Arguments
formula |
the formula of the linear part of the model. The rules for creating the formula are standard for R but: 1) the formula must not contain the dependent variable (it is one-sided); 2) the |
theta0 |
the |
censor.time |
the censoring time, a positive constant. |
survival.model |
the type of the survival model, can be either proportional hazards with Type I censoring ( |
lower |
the |
upper |
the |
n.levels |
the |
echo |
Print the call of the function? |
Details
For mathematical details, see the referenced paper.
Value
The n
times m
matrix of all candidate regressors of a proportional hazards model linearized in theta0
.
Author(s)
Radoslav Harman, Lenka Filova
References
Konstantinou M, Biedermann S, Kimber A (2014). Optimal designs for two-parameter nonlinear models with application to survival models. Statistica Sinica, 24(1), 415-428.
See Also
Fx_cube, Fx_simplex, Fx_blocks, Fx_glm, Fx_dose
Examples
# The proportional hazards model with random censoring
# for three binary explanatory variables x1,x2,x3 without intercept
# censoring time 30 and parameter values theta0=c(1,1,1)
Fx <- Fx_survival(~x1 + x2 + x3 - 1, c(1, 1, 1), 30, "phrand",
lower = c(0, 0, 0), upper = c(1, 1, 1), n.levels = c(2, 2, 2))
# The locally D-optimal approximate design
w <- od_REX(Fx, crit="D")$w.best
od_print(Fx, w, Fx)
## Not run:
# The proportional hazards model with random censoring
# for explanatory variables x1,x2,x3 in the range [0,1] discretized into 11 points
# censoring time 30 and parameter values theta0=c(1,1,1)
Fx <- Fx_survival(~x1 + x2 + x3 - 1, c(1, 1, 1), 30, "phrand",
lower = c(0, 0, 0), upper = c(1, 1, 1), n.levels = c(11, 11, 11))
# The locally A-optimal exact design of size 50 without replications
w <- od_KL(Fx, 50, crit="A", bin=TRUE, t.max=5)$w.best
od_plot(Fx, w, Fx)
## End(Not run)