OptSig.F {OptSig} | R Documentation |
Optimal Significance Level for an F-test
Description
The function calculates the optimal level of significance for an F-test
Usage
OptSig.F(df1, df2, ncp, p = 0.5, k = 1, Figure = TRUE)
Arguments
df1 |
the first degrees of freedom for the F-distribution |
df2 |
the second degrees of freedom for the F-distribution |
ncp |
a value of of the non-centality paramter |
p |
prior probability for H0, default is p = 0.5 |
k |
relative loss from Type I and II errors, k = L2/L1, default is k = 1 |
Figure |
show graph if TRUE (default); No graph if FALSE |
Details
See Kim and Choi (2020)
Value
alpha.opt |
Optimal level of significance |
crit.opt |
Critical value at the optimal level |
beta.opt |
Type II error probability at the optimal level |
Note
Applicable to any F-test, following F-distribution
The black curve in the figure is the line of enlightened judgement: see Kim and Choi (2020). The red dot inticates the optimal significance level that minimizes the expected loss: (alpha.opt,beta.opt). The blue horizontal line indicates the case of alpha = 0.05 as a reference point.
Author(s)
Jae. H Kim
References
Kim and Choi, 2020, Choosing the Level of Significance: A Decision-theoretic Approach: Abacus: a Journal of Accounting, Finance and Business Studies. Wiley. <https://doi.org/10.1111/abac.12172>
See Also
Leamer, E. 1978, Specification Searches: Ad Hoc Inference with Nonexperimental Data, Wiley, New York.
Kim, JH and Ji, P. 2015, Significance Testing in Empirical Finance: A Critical Review and Assessment, Journal of Empirical Finance 34, 1-14. <DOI:http://dx.doi.org/10.1016/j.jempfin.2015.08.006>
Kim, Jae H., 2020, Decision-theoretic hypothesis testing: A primer with R package OptSig, The American Statistician. <https://doi.org/10.1080/00031305.2020.1750484.>
Examples
data(data1)
# Define Y and X
y=data1$lnoutput; x=cbind(data1$lncapital,data1$lnlabor)
# Restriction matrices to test for constant returns to scale
Rmat=matrix(c(0,1,1),nrow=1); rvec=matrix(0.94,nrow=1)
# Model Estimation and F-test
M=R.OLS(y,x,Rmat,rvec)
# Degrees of Freedom and estimate of non-centrality parameter
K=ncol(x)+1; T=length(y)
df1=nrow(Rmat);df2=T-K; NCP=M$ncp
# Optimal level of Significance: Under Normality
OptSig.F(df1,df2,ncp=NCP,p=0.5,k=1, Figure=TRUE)