Estimation of Optimal Size for a Holdout Set for Updating a Predictive Score


[Up] [Top]

Documentation for package ‘OptHoldoutSize’ version 0.1.0.0

Help Pages

add_aspre_interactions Add interaction terms corresponding to ASPRE model
aspre Computes ASPRE score
aspre_emulation Emulation-based OHS estimation for ASPRE
aspre_k2 Cost estimating function in ASPRE simulation
aspre_parametric Parametric-based OHS estimation for ASPRE
ci_cover_a_yn Data for example on asymptotic confidence interval for OHS.
ci_cover_cost_a_yn Data for example on asymptotic confidence interval for min cost.
ci_cover_cost_e_yn Data for example on empirical confidence interval for min cost.
ci_cover_e_yn Data for example on empirical confidence interval for OHS.
ci_mincost Confidence interval for minimum total cost, when estimated using parametric method
ci_ohs Confidence interval for optimal holdout size, when estimated using parametric method
cov_fn Covariance function for Gaussian process
data_example_simulation Data for vignette showing general example
data_nextpoint_em Data for 'next point' demonstration vignette on algorithm comparison using emulation algorithm
data_nextpoint_par Data for 'next point' demonstration vignette on algorithm comparison using parametric algorithm
error_ohs_emulation Measure of error for emulation-based OHS emulation
exp_imp_fn Expected improvement
gen_base_coefs Coefficients for imperfect risk score
gen_preds Generate matrix of random observations
gen_resp Generate response
grad_mincost_powerlaw Gradient of minimum cost (power law)
grad_nstar_powerlaw Gradient of optimal holdout size (power law)
logistic Logistic
logit Logit
model_predict Make predictions
model_train Train model (wrapper)
mu_fn Updating function for mean.
next_n Finds best value of n to sample next
ohs_array Data for vignette on algorithm comparison
ohs_resample Data for vignette on algorithm comparison
optimal_holdout_size Estimate optimal holdout size under parametric assumptions
optimal_holdout_size_emulation Estimate optimal holdout size under semi-parametric assumptions
oracle_pred Generate responses
params_aspre Parameters of reported ASPRE dataset
plot.optholdoutsize Plot estimated cost function
plot.optholdoutsize_emul Plot estimated cost function using emulation (semiparametric)
powerlaw Power law function
powersolve Fit power law curve
powersolve_general General solver for power law curve
powersolve_se Standard error matrix for learning curve parameters (power law)
psi_fn Updating function for variance.
sens10 Sensitivity at theshold quantile 10%
sim_random_aspre Simulate random dataset similar to ASPRE training data
split_data Split data