add_aspre_interactions | Add interaction terms corresponding to ASPRE model |
aspre | Computes ASPRE score |
aspre_emulation | Emulation-based OHS estimation for ASPRE |
aspre_k2 | Cost estimating function in ASPRE simulation |
aspre_parametric | Parametric-based OHS estimation for ASPRE |
ci_cover_a_yn | Data for example on asymptotic confidence interval for OHS. |
ci_cover_cost_a_yn | Data for example on asymptotic confidence interval for min cost. |
ci_cover_cost_e_yn | Data for example on empirical confidence interval for min cost. |
ci_cover_e_yn | Data for example on empirical confidence interval for OHS. |
ci_mincost | Confidence interval for minimum total cost, when estimated using parametric method |
ci_ohs | Confidence interval for optimal holdout size, when estimated using parametric method |
cov_fn | Covariance function for Gaussian process |
data_example_simulation | Data for vignette showing general example |
data_nextpoint_em | Data for 'next point' demonstration vignette on algorithm comparison using emulation algorithm |
data_nextpoint_par | Data for 'next point' demonstration vignette on algorithm comparison using parametric algorithm |
error_ohs_emulation | Measure of error for emulation-based OHS emulation |
exp_imp_fn | Expected improvement |
gen_base_coefs | Coefficients for imperfect risk score |
gen_preds | Generate matrix of random observations |
gen_resp | Generate response |
grad_mincost_powerlaw | Gradient of minimum cost (power law) |
grad_nstar_powerlaw | Gradient of optimal holdout size (power law) |
logistic | Logistic |
logit | Logit |
model_predict | Make predictions |
model_train | Train model (wrapper) |
mu_fn | Updating function for mean. |
next_n | Finds best value of n to sample next |
ohs_array | Data for vignette on algorithm comparison |
ohs_resample | Data for vignette on algorithm comparison |
optimal_holdout_size | Estimate optimal holdout size under parametric assumptions |
optimal_holdout_size_emulation | Estimate optimal holdout size under semi-parametric assumptions |
oracle_pred | Generate responses |
params_aspre | Parameters of reported ASPRE dataset |
plot.optholdoutsize | Plot estimated cost function |
plot.optholdoutsize_emul | Plot estimated cost function using emulation (semiparametric) |
powerlaw | Power law function |
powersolve | Fit power law curve |
powersolve_general | General solver for power law curve |
powersolve_se | Standard error matrix for learning curve parameters (power law) |
psi_fn | Updating function for variance. |
sens10 | Sensitivity at theshold quantile 10% |
sim_random_aspre | Simulate random dataset similar to ASPRE training data |
split_data | Split data |