plot.CirClust {OptCirClust} | R Documentation |
Plot Method for Circular Data Clustering
Description
The plot
method for circular data clustering result
object of class CirClust
.
It visualizes circular clusters on the input data.
Usage
## S3 method for class 'CirClust'
plot(
x,
xlab = "",
ylab = "",
main = NULL,
sub = "",
col.clusters = c("blue", "red3", "green3", "orange", "purple", "brown"),
axes = FALSE,
xlim = c(-1.75, 1.75),
ylim = c(-1.75, 1.75),
fill = "floralwhite",
border = "gray36",
border.lty = "dotted",
...
)
Arguments
x |
an object of class as returned by |
xlab |
a character string. The x-axis label for the plot. Default is no string. |
ylab |
a character string. The y-axis label for the plot. Default is no string. |
main |
a character string. The title for the plot. |
sub |
a character string. The subtitle for the plot. |
col.clusters |
a vector of colors, defined either by integers or by color names. If the length is shorter than the number of clusters, the colors will be reused. By default the blue, red3, green3, orange, purple, brown colors are used in the plot. |
axes |
the axis will be ploted if set TRUE. Default is FALSE. |
xlim |
range of the x axis in the plot. Default is from -1.75 to 1.75. |
ylim |
range of the y axis in the plot. Default is from -1.75 to 1.75. |
fill |
the color to fill inside the ring as the background of data points. |
border |
the color to draw cluster borders. |
border.lty |
the line type to draw cluster borders. |
... |
other arguments associated with the plot function |
Value
A copy of the input object of class CirClust
.
Examples
opar <- par(mar=c(1,1,2,1))
# Example 1. Circular data clustering
n <- 100
Circumference <- 7
O <- runif(n, 0, Circumference)
result <- CirClust(O, K=3, Circumference=Circumference)
plot(result, fill="mintcream", main="Example 1. Circular clustering")
# Example 2. Circular data clustering
n <- 40
m <- 5
O <- c(rnorm(n,mean=5,sd=m), rnorm(n,mean=15,sd=m), rnorm(n,mean=26,sd=m))
K <- 3
Circumference <- 28
result <- CirClust(O, K, Circumference, method = "FOCC")
color <- c("royalblue", "green3", "firebrick") # c("#0000CD","#808080", "#DC143C")
par(mar=c(1,1,2,1))
plot(result, col.clusters = color, fill="floralwhite",
main="Example 2. Circular clustering")
# Example 3. Periodic data clustering
n <- 100
period <- 5.2
O <- rnorm(n)
result <- CirClust(O, K=5, Circumference=period)
plot(result, fill="navy", border="gray", border.lty="dotted",
main="Example 3. Periodic clustering")
par(opar)