mxRestore {OpenMx} | R Documentation |
Restore model state from a checkpoint file
Description
Restore model state from a checkpoint file
Usage
mxRestore(
model,
chkpt.directory = mxOption(model, "Checkpoint directory"),
chkpt.prefix = mxOption(model, "Checkpoint Prefix"),
line = NULL,
strict = FALSE
)
mxRestoreFromDataFrame(model, checkpoint, line = NULL)
Arguments
model |
an MxModel object |
chkpt.directory |
character. Directory where the checkpoint file is located |
chkpt.prefix |
character. Prefix of the checkpoint file |
line |
integer. Which line from the checkpoint file to restore (defaults to the last line) |
strict |
logical. Require that the checkpoint name and model name match |
checkpoint |
a data.frame containing the model state |
Details
In general, the arguments ‘chkpt.directory’ and ‘chkpt.prefix’ should be identical to the mxOption
: ‘Checkpoint Directory’ and ‘Checkpoint Prefix’ that were specified on the model before execution.
Alternatively, the checkpoint file can be manually loaded as a data.frame in R and passed to mxRestoreFromDataFrame
.
Use read.table
with the options header=TRUE, sep="\t", stringsAsFactors=FALSE, check.names=FALSE
.
Value
Returns an MxModel object with free parameters updated to the last saved values. When ‘line’ is provided, the MxModel is updated to the values on that line within the checkpoint file.
References
The OpenMx User's guide can be found at https://openmx.ssri.psu.edu/documentation
See Also
Other model state:
mxComputeCheckpoint()
,
mxSave()
Examples
library(OpenMx)
# Simulate some data
x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)
dir <- tempdir() # safe place to create files
mxOption(key="Checkpoint Directory", value=dir)
# Create a model that includes an expected covariance matrix,
# an expectation function, a fit function, and an observed covariance matrix
data <- mxData(cov(tmpFrame), type="cov", numObs = 1000)
expCov <- mxMatrix(type="Symm", nrow=2, ncol=2, values=c(.2,.1,.2), free=TRUE, name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", dimnames=tmpNames)
fitFunction <- mxFitFunctionML()
testModel <- mxModel(model="testModel", expCov, data, expFunction, fitFunction)
#Use mxRun to optimize the free parameters in the expected covariance matrix
modelOut <- mxRun(testModel, checkpoint = TRUE)
modelOut$expCov
#Use mxRestore to load the last checkpoint saved state of the model
modelRestore <- mxRestore(testModel)
modelRestore$expCov