make_PCs_svd {OmicKriging} | R Documentation |
Run Principal Component Analysis (PCA) using base R svd() function.
Description
A simple wrapper around the base R svd() function which returns the top N
eigenvectors of a matrix. Use this function to generate covariates for use
with the okriging
or krigr_cross_validation
functions. This wrapper preserves the rownames of the original matrix.
Usage
make_PCs_svd(X, n.top = 2)
Arguments
X |
A correlation matrix. |
n.top |
Number of top principal compenents to return |
Value
A matrix of Principal Components of dimension (# of samples) x (n.top). As expected, eigenvectors are ordered by eigenvalue. Rownames are given as sample IDs.
Examples
## compute PC's using the gene expression correlation matrix from vignette
## load gene expression values from vignette
expressionFile <- system.file(package = "OmicKriging",
"doc/vignette_data/ig_gene_subset.txt.gz")
## compute correlation matrix
geneCorrelationMatrix <- make_GXM(expressionFile)
## find top ten PC's of this matrix using SVD
topPcs <- make_PCs_svd(geneCorrelationMatrix, n.top=10)
[Package OmicKriging version 1.4.0 Index]