make_PCs_irlba {OmicKriging} | R Documentation |
Run Principal Component Analysis (PCA) using the irlba package.
Description
A simple wrapper around the irlba() function which computes a partial SVD
efficiently. This function's run time depends on the number of eigenvectors
requested but scales well. Use this function to generate covariates for use
with the okriging
or krigr_cross_validation
functions.
Usage
make_PCs_irlba(X, n.top = 2)
Arguments
X |
A correlation matrix. |
n.top |
Number of top principal compenents to return |
Value
A matrix of Principal Components of dimension (# of samples) x (n.top). As expected, eigenvectors are ordered by eigenvalue. Rownames are given as sample IDs.
References
library(irlba)
Examples
## compute PC's using the gene expression correlation matrix from vignette
## load gene expression values from vignette
expressionFile <- system.file(package = "OmicKriging",
"doc/vignette_data/ig_gene_subset.txt.gz")
## compute correlation matrix
geneCorrelationMatrix <- make_GXM(expressionFile)
## find top ten PC's of this matrix using SVD
topPcs <- make_PCs_irlba(geneCorrelationMatrix, n.top=10)
[Package OmicKriging version 1.4.0 Index]