OmegaG {OmegaG} | R Documentation |
Composite Reliability Coefficient Omega-Generic
Description
This function is used to estimate the composite reliability coefficient Omega-generic (Mai, Srivastava, & Krull, 2021), given factor loadings, factor covariance matrix, and covariance matrix of item residuals.
Usage
OmegaG(
Lambda = NULL,
Phi = NULL,
Psi = NULL,
items.index = NULL,
factor.index = NULL,
scale.structure = NULL,
modeltype = c("correlated-factor", "bi-factor")
)
Arguments
Lambda |
The input factor lading matrix. Each row contains the loadings of one item on factors. Each column includes the loadings of one factor. In the case of bi-factor structure, the first column of loadings is on the global factor. |
Phi |
The input factor covariance matrix. |
Psi |
The input covariance matrix of item residuals. Typically, |
items.index |
The vector indexing the items of which the composite reliability is being estimated. It is an optional argument. If it is specified, the argument |
factor.index |
The vector indexing the factor(s)/construct(s) regarding which the composite reliability is being estimated. It is an optional argument. If it is not specified, the function will estimate the composite reliability regarding each factor/construct. |
scale.structure |
The scale structure in a list or a Boolean matrix form. In a list form, each element is a vector of items (names) of a subscale. If in a boolean form, the element on the i-th row and the j-th column indicates whether the i-th item is within the j-th subscale. If both the argument |
modeltype |
The type of factor structure ( |
Value
The estimated composite reliability coefficient OmegaG.
Author(s)
Yujiao Mai, Deo Kumar Srivastava, and Kevin R Krull
References
Mai, Y., Srivastava, D.K., & Krull, K.R. (2021). Estimating Composite reliability of Multidimensional Measurement with Overlapping Items. Present at the 2021 Eastern North American Region (ENAR) Spring Virtual Meeting.
Examples
#### Example 1:
OmegaG(Lambda = PedsQLMFS$ESEM$Lambda,
Phi = PedsQLMFS$ESEM$Phi,
Psi = PedsQLMFS$ESEM$Psi,
modeltype = "correlated-factor",
scale.structure = PedsQLMFS$ScaleStructure
)
# Model type = correlated-factor
#
# CR of each subscale:
# GeneralFatigue : 0.770
# SleepFatigue : 0.690
# CognitiveFatigue : 0.777
#### Example 2:
OmegaG(Lambda = PedsQLMFS$biESEM$Lambda,
Phi = PedsQLMFS$biESEM$Phi,
Psi = PedsQLMFS$biESEM$Psi,
modeltype = "bi-factor",
scale.structure = PedsQLMFS$ScaleStructure
)
# Model type = bi-factor
#
# Hierarchy and Hierarchical-subscale CR:
# GlobalFatigue : 0.806
# GeneralFatigue : 0.174
# SleepFatigue : 0.361
# CognitiveFatigue : 0.190
#
# Scale Total and Subscale CR:
# GlobalFatigue + all sepcific factors : 0.926
# GlobalFatigue + GeneralFatigue : 0.859
# GlobalFatigue + SleepFatigue : 0.758
# GlobalFatigue + CognitiveFatigue : 0.839
# Example 3:
OmegaG::OmegaG(Lambda = PedsQLMFS$biESEM$Lambda,
Phi = PedsQLMFS$biESEM$Phi,
Psi = PedsQLMFS$biESEM$Psi,
modeltype = "bi-factor",
items.index = 1:6,factor.index = 2
)
# Model type = bi-factor
#
# CR of Items 1 2 3 4 5 6 regarding factor 2:
# GeneralFatigue : 0.174
# Example 4:
OmegaG::OmegaG(Lambda = PedsQLMFS$ESEM$Lambda,
Phi = PedsQLMFS$ESEM$Phi,
Psi = PedsQLMFS$ESEM$Psi,
modeltype = "correlated-factor",
items.index = 7:12,factor.index = 2
)
# Model type = correlated-factor
#
# CR of Items 7 8 9 10 11 12 regarding factor 2:
# SleepFatigue : 0.690