Predict.OTReg {OTE} | R Documentation |
Prediction function for the object returned by OTReg
Description
This function provides prediction for test data on the trained OTReg
object for the continuous response variable.
Usage
Predict.OTReg(Opt.Trees, XTesting, YTesting)
Arguments
Opt.Trees |
An object of class |
XTesting |
An |
YTesting |
Optional. A vector of length |
Value
A list with values
Unexp.Variations |
Unexplained variations based on estimated response and given response. |
Pr.Values |
A vector of length |
Author(s)
Zardad Khan <zkhan@essex.ac.uk>
References
Khan, Z., Gul, A., Perperoglou, A., Miftahuddin, M., Mahmoud, O., Adler, W., & Lausen, B. (2019). Ensemble of optimal trees, random forest and random projection ensemble classification. Advances in Data Analysis and Classification, 1-20.
Liaw, A. and Wiener, M. (2002) “Classification and regression by random forest” R news. 2(3). 18–22.
See Also
Examples
# Load the data
data(Galaxy)
data <- Galaxy
#Divide the data into training and test parts
set.seed(9123)
n <- nrow(data)
training <- sample(1:n,round(2*n/3))
testing <- (1:n)[-training]
X <- data[,1:4]
Y <- data[,5]
#Train oTReg on the training data
Opt.Trees <- OTReg(XTraining=X[training,],YTraining = Y[training],t.initial=200)
#Predict on test data
Prediction <- Predict.OTReg(Opt.Trees, X[testing,],YTesting=Y[testing])
#Objects returned
names(Prediction)
Prediction$Unexp.Variations
Prediction$Pr.Values
Prediction$Trees.Used