Predict.OTProb {OTE} | R Documentation |
Prediction function for the object returned by OTProb
Description
This function provides prediction for test data on the trained OTProb
object for class membership probability estimation.
Usage
Predict.OTProb(Opt.Trees, XTesting, YTesting)
Arguments
Opt.Trees |
An object of class |
XTesting |
An |
YTesting |
Optional. A vector of length |
Value
A list with values
Brier.Score |
Brier Score based on the estimated probabilities and true class label in YTesting. |
Estimated.Probabilities |
A vector of length |
Author(s)
Zardad Khan <zkhan@essex.ac.uk>
References
Khan, Z., Gul, A., Perperoglou, A., Miftahuddin, M., Mahmoud, O., Adler, W., & Lausen, B. (2019). Ensemble of optimal trees, random forest and random projection ensemble classification. Advances in Data Analysis and Classification, 1-20.
Liaw, A. and Wiener, M. (2002) “Classification and regression by random forest” R news. 2(3). 18–22.
See Also
Examples
#load the data
data(Body)
data <- Body
#Divide the data into training and test parts
set.seed(9123)
n <- nrow(data)
training <- sample(1:n,round(2*n/3))
testing <- (1:n)[-training]
X <- data[,1:24]
Y <- data[,25]
#Train OTClass on the training data
Opt.Trees <- OTProb(XTraining=X[training,],YTraining = Y[training],t.initial=200)
#Predict on test data
Prediction <- Predict.OTProb(Opt.Trees, X[testing,],YTesting=Y[testing])
#Objects returned
names(Prediction)
Prediction$Brier.Score
Prediction$Estimated.Probabilities