loclin {OSCV} | R Documentation |
Computing the local linear estimate (LLE).
Description
Computing the LLE based on data (desx,y)
over the given vector of the argument values u
. The Gausssian kernel is used. See expression (3) in Savchuk and Hart (2017).
Usage
loclin(u, desx, y, h)
Arguments
u |
numerical vector of argument values, |
desx |
numerical vecror of design points, |
y |
numerical vecror of data values (corresponding to the specified design points |
h |
numerical bandwidth value (scalar). |
Details
Computing the LLE based on the Gaussian kernel for the specified vector of the argument values u
and given vectors of design points desx
and the corresponding data values y
.
Value
Numerical vector of the LLE values computed over the specified vector of u
points.
References
Clevelend, W.S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74(368), 829-836.
Savchuk, O.Y., Hart, J.D. (2017). Fully robust one-sided cross-validation for regression functions. Computational Statistics, doi:10.1007/s00180-017-0713-7.
See Also
OSCV_reg
, h_OSCV_reg
, ASE_reg
, h_ASE_reg
, CV_reg
.
Examples
## Not run:
# Example (simulated data).
n=200
dx=(1:n-0.5)/n
regf=2*dx^10*(1-dx)^2+dx^2*(1-dx)^10
u=seq(0,1,len=1000)
ydat=regf+rnorm(n,sd=0.002)
dev.new()
plot(dx,regf,'l',lty="dashed",lwd=3,xlim=c(0,1),ylim=c(1.1*min(ydat),1.1*max(ydat)),
cex.axis=1.7,cex.lab=1.7)
title(main="Function, generated data, and LLE",cex.main=1.5)
points(dx,ydat,pch=20,cex=1.5)
lines(u,loclin(u,dx,ydat,0.05),lwd=3,col="blue")
legend(0,1.1*max(ydat),legend=c("LLE based on h=0.05","true regression function"),
lwd=c(2,3),lty=c("solid","dashed"),col=c("blue","black"),cex=1.5,bty="n")
legend(0.7,0.5*min(ydat),legend="n=200",cex=1.7,bty="n")
## End(Not run)