C_smooth {OSCV} | R Documentation |
The OSCV smooth rescaling constant.
Description
Computing the OSCV smooth rescaling constant that corresponds to using the two-sided kernel H_I
for the cross-validation purposes and the Gaussian kernel in the estimation stage. The constant is applicable for the OSCV versions in the regression and kernel density estimation contexts.
Usage
C_smooth(alpha, sigma)
Arguments
alpha |
first parameter of the two-sided cross-validation kernel |
sigma |
second parameter of the two-sided cross-validation kernel |
Details
Computation of the OSCV rescaling constant C
(see (10) in Savchuk and Hart (2017) or (3) in Savchuk (2017)). The constant is a function of the parameters (\alpha,\sigma)
of the two-sided cross-validation kernel H_I
defined by expression (15) in Savchuk and Hart (2017). The Gaussian kernel is used for computing the ultimate (regression or density) estimate. The constant is used in the OSCV versions for kernel regression and density estimation. Notice that in the cases \alpha=0
, \sigma>0
and \sigma=1
, -\infty<\alpha<\infty
the kernel H_I
reduces to the Gaussian kernel.
Value
The OSCV smooth rescaling constant C
for the given values of the parameters \alpha
and \sigma
.
References
Savchuk, O.Y., Hart, J.D. (2017). Fully robust one-sided cross-validation for regression functions. Computational Statistics, doi:10.1007/s00180-017-0713-7.
Savchuk, O.Y. (2017). One-sided cross-validation for nonsmooth density functions, arXiv:1703.05157.
See Also
L_I
, H_I
, OSCV_reg
, h_OSCV_reg
, OSCV_LI_dens
, OSCV_Gauss_dens
, h_OSCV_dens
, loclin
.
Examples
# OSCV rescaling constant for the robust cross-validation kernel with
# (alpha,sigma)=(16.8954588,1.01).
C_smooth(16.8954588,1.01)
# OSCV smooth rescaling constant in the case when the kernel H_I is Gaussian.
C_smooth(1,1)