ASE_reg {OSCV} | R Documentation |
The ASE function for the local linear estimator (LLE) in the regression context.
Description
Computing , the value of the ASE function for the local linear estimator in the regression context, for the given vector of
values.
Usage
ASE_reg(h, desx, y, rx)
Arguments
h |
numerical vector of bandwidth values, |
desx |
numerical vecror of design points, |
y |
numerical vecror of data points corresponding to the design points |
rx |
numerical vecror of values of the regression function at |
Details
The average squared error (ASE) is used as a measure of performace of the local linear estimator based on the Gaussian kernel.
Value
The vector of values of for the correponsing vector of
values.
References
Hart, J.D. and Yi, S. (1998) One-sided cross-validation. Journal of the American Statistical Association, 93(442), 620-631.
See Also
loclin
, h_ASE_reg
, CV_reg
, OSCV_reg
.
Examples
## Not run:
# Example (ASE function for a random sample of size n=100 generated from the function reg3 that
# has six cusps. The function originates from the article of Savchuk et al. (2013).
# The level of the added Gaussian noise is sigma=1/1000).
n=100
dx=(1:n-0.5)/n
regx=reg3(dx)
ydat=regx+rnorm(n,sd=1/1000)
harray=seq(0.003,0.05,len=300)
ASEarray=ASE_reg(harray,dx,ydat,regx)
hmin=round(h_ASE_reg(dx,ydat,regx),digits=4)
dev.new()
plot(harray,ASEarray,'l',lwd=3,xlab="h",ylab="ASE",main="ASE function for a random sample
from r3",cex.lab=1.7,cex.axis=1.7,cex.main=1.5)
legend(0.029,0.0000008,legend=c("n=100","sigma=1/1000"),cex=1.7,bty="n")
legend(0.005,0.000002,legend=paste("h_ASE=",hmin),cex=2,bty="n")
## End(Not run)
[Package OSCV version 1.0 Index]