ORKM-package {ORKM} | R Documentation |
The Online Regularized K-Means Clustering Algorithm
Description
Algorithm of online regularized k-means to deal with online multi(single) view data. The philosophy of the package is described in Guo G. (2020) <doi:10.1080/02331888.2020.1823979>.
Details
The DESCRIPTION file:
Package: | ORKM |
Title: | The Online Regularized K-Means Clustering Algorithm |
Date: | 2024-5-5 |
Version: | 0.8.0.0 |
Authors@R: | c(person("Guangbao", "Guo",role = c("aut", "cre"), email = "ggb11111111@163.com", comment = c(ORCID = "0000-0002-4115-6218")), person("Miao", "Yu", role="aut"), person("Haoyue", "Song", role="aut"), person("Ruiling", "Niu", role="aut")) |
Description: | Algorithm of online regularized k-means to deal with online multi(single) view data. The philosophy of the package is described in Guo G. (2020) <doi:10.1080/02331888.2020.1823979>. |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
Roxygen: | list(markdown = TRUE) |
RoxygenNote: | 7.2.0 |
Author: | Guangbao Guo [aut, cre] (0000-0002-4115-6218), Miao Yu [aut], Haoyue Song [aut], Ruiling Niu [aut] |
Maintainer: | Guangbao Guo <ggb11111111@163.com> |
Suggests: | testthat (>= 3.0.0) |
Imports: | MASS, Matrix, stats, |
Config/testthat/edition: | 3 |
Index of help topics:
DMC Deep matrix clustering algorithm for multi-view data INDEX Caculate the indication on the functions KMeans K-means clustering algorithm for multi/single view data OGD Online gradient descent algorithm for online single-view data clustering OMU Online multiplicative update algorithm for online multi-view data clustering ORKM-package The Online Regularized K-Means Clustering Algorithm ORKMeans Online regularized K-means clustering algorithm for online multi-view data PKMeans Power K-means clustering algorithm for single view data QCM The QCM data set with K=5. RKMeans Regularized K-means clustering algorithm for multi-view data Washington_cites The third view of Washington data set. Washington_content The second view of Washington data set. Washington_inbound The third view of Washington data set. Washington_outbound The fourth view of Washington data set. Wisconsin_cites The first view of Wisconsin data set. Wisconsin_content The second view of Wisconsin data set. Wisconsin_inbound The third view of Wisconsin data set. Wisconsin_outbound The fourth view of Wisconsin data set. cora_view1 The first view of Cora data set. cora_view2 The second view of Cora data set. cora_view3 The third view of Cora data set. cora_view4 The fourth view of Cora data set. cornell_cites The first view of Cornell data set. cornell_content The second view of Cornell data set. cornell_inbound The third view of Cornell data set. cornell_outbound The fourth view of Cornell data set. labelTexas True clustering labels for Texas data set. labelWashington True clustering labels for Washington data set. labelWisconsin True clustering labels for Wisconsin data set. labelcora True clustering labels for Cora data set. labelcornell True clustering labels for Cornell data set. movie_1 The first view of Movie data set. movie_2 The second view of Movie data set. seed A single-view data set named Seeds. sobar A single-view data set named Sobar. texas_cites The first view of Texas data set. texas_content The second view of Texas dataset. texas_inbound The third view of Texas data set. texas_outbound The fourth view of Texas data set. turelabel Ture label of Movie data set.
You can use this package for online multi-view clustering, the dataset and real labels are also provided in the package.
Author(s)
Guangbao Guo [aut, cre] (0000-0002-4115-6218), Miao Yu [aut], Haoyue Song [aut], Ruiling Niu [aut]
Maintainer: Guangbao Guo <ggb11111111@163.com>
References
Guangbao Guo, Miao Yu, Guoqi Qian, (2023), Orkm: Online Regularized k-Means Clustering for Online Multi-View Data.
See Also
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4484209
Examples
library(MASS)
library(Matrix)
yita=0.5;V=2;chushi=100;K=3;r=0.5;max.iter=10;n1=n2=n3=70;gamma=0.1;alpha=0.98;epsilon=1
X1<-rnorm(n1,20,2);X2<-rnorm(n2,25,1.5);X3<-rnorm(n3,30,2)
Xv<-c(X1,X2,X3)
data<-matrix(Xv,n1+n2+n3,2)
data[1:70,2]<-1;data[71:140,2]<-2;data[141:210,2]<-3
truere=data[,2]
X<-matrix(data[,1],n1+n2+n3,1)
lamda1<-0.2;lamda2<-0.8
lamda<-matrix(c(lamda1,lamda2),nrow=1,ncol=2)
sol.svd <- svd(lamda)
U1<-sol.svd$u
D1<-sol.svd$d
V1<-sol.svd$v
C1<-t(U1)
Y1<-C1/D1
view<-V1
view1<-matrix(view[1,])
view2<-matrix(view[2,])
X1<-matrix(view1,n1+n2+n3,1)
X2<-matrix(view2,n1+n2+n3,1)
ORKMeans(X=X1,K=K,V=V,r=r,chushi=chushi,yita=yita,gamma=gamma,epsilon=epsilon,
max.iter=max.iter,truere=truere,method=0)
[Package ORKM version 0.8.0.0 Index]