FDP_compute {OPTtesting} | R Documentation |
FDP_compute
Description
False discovery proportion and False non-discovery proportion computation
Usage
FDP_compute(decision, ui, positive)
Arguments
decision |
returns from the function Optimal_procedure_3 |
ui |
true mean vector |
positive |
TRUE/FALSE valued. TRUE: H0: ui no greater than 0. FALSE: H0: ui no less than 0. |
Value
False discovery proportion (FDP) and False non-discovery proportion (FNP)
Examples
ui = rnorm(10,0,1) #assume this is true parameter
decision = rbinom(10,1, 0.4) #assume this is decision vector
FDP_compute(decision,ui,TRUE)
library(MASS)
######################################
#construct a test statistic vector Z
p = 1000
n_col = 4
pi_0 = 0.6
pi_1 = 0.2
pi_2 = 0.2
nu_0 = 0
mu_1 = -1.5
mu_2 = 1.5
tau_sqr_1 = 0.1
tau_sqr_2 = 0.1
A = matrix(rnorm(p*n_col,0,1), nrow = p, ncol = n_col, byrow = TRUE)
Sigma = A %*% t(A) +diag(p)
Sigma = cov2cor(Sigma) #covariance matrix
b = rmultinom(p, size = 1, prob = c(pi_0,pi_1,pi_2))
ui = b[1,]*nu_0 + b[2,]*rnorm(p, mean = mu_1,
sd = sqrt(tau_sqr_1)) + b[3,]*rnorm(p, mean = mu_2,
sd = sqrt(tau_sqr_2)) # actual situation
Z = mvrnorm(n = 1,ui, Sigma, tol = 1e-6, empirical = FALSE, EISPACK = FALSE)
prob_p = d_value(Z,Sigma)
#decision
level = 0.1 #significance level
decision_p = Optimal_procedure_3(prob_p,level)
FDP_compute(decision_p$ai,ui,TRUE)
[Package OPTtesting version 1.0.0 Index]