ZEST {OPI} | R Documentation |
ZEST
Description
An implementation of the Bayesian test procedures of King-Smith et al.
and Watson and Pelli. Note that we use the term pdf
throughout as in the
original paper, even though they are discrete probability functions in this
implementation.
Usage
ZEST(
domain = 0:40,
prior = rep(1/length(domain), length(domain)),
likelihood = sapply(domain, function(tt) 0.03 + (1 - 0.03 - 0.03) * (1 -
stats::pnorm(domain, tt, 1))),
stopType = "S",
stopValue = 1.5,
minStimulus = utils::head(domain, 1),
maxStimulus = utils::tail(domain, 1),
maxSeenLimit = 2,
minNotSeenLimit = 2,
maxPresentations = 100,
minInterStimInterval = NA,
maxInterStimInterval = NA,
verbose = 0,
makeStim,
stimChoice = "mean",
...
)
ZEST.start(
domain = 0:40,
prior = rep(1/length(domain), length(domain)),
likelihood = sapply(domain, function(tt) 0.03 + (1 - 0.03 - 0.03) * (1 -
stats::pnorm(domain, tt, 1))),
stopType = "S",
stopValue = 1.5,
minStimulus = utils::head(domain, 1),
maxStimulus = utils::tail(domain, 1),
maxSeenLimit = 2,
minNotSeenLimit = 2,
maxPresentations = 100,
makeStim,
stimChoice = "mean",
...
)
ZEST.step(state, nextStim = NULL, fixedStimValue = NA, fixedResponse = NA)
ZEST.stop(state)
ZEST.final(state)
Arguments
domain |
Vector of values over which pdf is kept. |
prior |
Starting probability distribution over domain. Same length as |
likelihood |
Matrix where |
stopType |
|
stopValue |
Value for number of presentations ( |
minStimulus |
The smallest stimuli that will be presented. Could be different from
|
maxStimulus |
The largest stimuli that will be presented. Could be different from
|
maxSeenLimit |
Will terminate if |
minNotSeenLimit |
Will terminate if |
maxPresentations |
Maximum number of presentations regardless of |
minInterStimInterval |
If both |
maxInterStimInterval |
|
verbose |
|
makeStim |
A function that takes a dB value and numPresentations and returns an OPI datatype ready for passing to opiPresent. See examples. |
stimChoice |
A true ZEST procedure uses the |
... |
Extra parameters to pass to the opiPresent function |
state |
Current state of the ZEST returned by |
nextStim |
A valid object for |
fixedStimValue |
A number in |
fixedResponse |
Ignored if |
Details
This is an implementation of King-Smith et al.'s ZEST procedure and Watson and Pelli's QUEST procedure. All presentations are rounded to an element of the supplied domain.
Note this function will repeatedly call opiPresent
for a stimulus until opiPresent
returns NULL
(ie no error occurred).
The checkFixationOK
function is called (if present in stim made from makeStim
)
after each presentation, and if it returns FALSE, the pdf for that location is not changed
(ie the presentation is ignored), but the stim, number of presentations etc is recorded in
the state.
If more than one ZEST is to be interleaved (for example, testing multiple locations), then the
ZEST.start
, ZEST.step
, ZEST.stop
and ZEST.final
calls can maintain
the state of the ZEST after each presentation, and should be used. If only a single ZEST is
required, then the simpler ZEST
can be used, which is a wrapper for the four functions
that maintain state. See examples below.
Value
Single location
ZEST
returns a list containing
-
npres
Total number of presentations used. -
respSeq
Response sequence stored as a matrix: row 1 is dB values of stimuli, row 2 is 1/0 for seen/not-seen, row 3 is fixated 1/0 (always 1 if
checkFixationOK
notpresent in stim objects returned from
makeStim
).-
pdfs
Ifverbose
is bigger than 0, then this is a list of the pdfs used for each presentation, otherwise NULL. -
final
The mean/median/mode of the final pdf, depending onstimChoice
, which is the determined threshold. -
opiResp
A list of responses received from each successful call toopiPresent
withinZEST
.
Multilple locations
ZEST.start
returns a list that can be passed to ZEST.step
, ZEST.stop
, and
ZEST.final
. It represents the state of a ZEST at a single location at a point in time
and contains the following.
-
name
ZEST
. -
pdf
Current pdf: vector of probabilities the same length asdomain
. -
numPresentations
The number of timesZEST.step
has been called on this state. -
stimuli
A vector containing the stimuli used at each call ofZEST.step
. -
responses
A vector containing the responses received at each call ofZEST.step
. -
responseTimes
A vector containing the response times received at each call ofZEST.step
. -
fixated
A vector containing TRUE/FALSE if fixation was OK according tocheckFixationOK
for each call ofZEST.step
(defaults to TRUE ifcheckFixationOK
not present). -
opiResp
A list of responses received from each call toopiPresent
withinZEST.step
. A copy of all of the parameters supplied to ZEST.start:
domain
,likelihood
,stopType
,stopValue
,minStimulus
,maxStimulus
,maxSeenLimit
,minNotSeenLimit
,maxPresentations
,makeStim
,stimChoice
,currSeenLimit
,currNotSeenLimit
, andopiParams
.
ZEST.step
returns a list containing
* state
The new state after presenting a stimuli and getting a response.
* resp
The return from the opiPresent
call that was made.
ZEST.stop
returns TRUE
if the ZEST has reached its stopping criteria, and FALSE
otherwise.
ZEST.final
returns an estimate of threshold based on state. If state$stimChoice
is mean
then the mean is returned. If state$stimChoice
is mode
then the
mode is returned. If state$stimChoice
is median
then the median is returned.
A list containing
* state
The new state after presenting a stimuli and getting a response.
* resp
The return from the opiPresent
call that was made.
References
P.E. King-Smith, S.S. Grigsny, A.J. Vingrys, S.C. Benes, and A. Supowit. "Efficient and Unbiased Modifications of the QUEST Threshold Method: Theory, Simulations, Experimental Evaluation and Practical Implementation", Vision Research 34(7) 1994. Pages 885-912.
A.B. Watson and D.G. Pelli. "QUEST: A Bayesian adaptive psychophysical method", Perception and Psychophysics 33 1983. Pages 113-l20.
A. Turpin, P.H. Artes and A.M. McKendrick "The Open Perimetry Interface: An enabling tool for clinical visual psychophysics", Journal of Vision 12(11) 2012.
See Also
Examples
chooseOpi("SimHenson")
if(!is.null(opiInitialize(type="C", cap=6)$err))
stop("opiInitialize failed")
##############################################
# This section is for single location ZESTs
##############################################
# Stimulus is Size III white-on-white as in the HFA
makeStim <- function(db, n) {
s <- list(x=9, y=9, level=dbTocd(db), size=0.43, color="white",
duration=200, responseWindow=1500, checkFixationOK=NULL)
class(s) <- "opiStaticStimulus"
return(s)
}
repp <- function(...) sapply(1:50, function(i) ZEST(makeStim=makeStim, ...))
a <- repp(stopType="H", stopValue= 3, verbose=0, tt=30, fpr=0.03)
b <- repp(stopType="S", stopValue=1.5, verbose=0, tt=30, fpr=0.03)
c <- repp(stopType="S", stopValue=2.0, verbose=0, tt=30, fpr=0.03)
d <- repp(stopType="N", stopValue= 50, verbose=0, tt=30, fpr=0.03)
e <- repp(prior=dnorm(0:40,m=0,s=5), tt=30, fpr=0.03)
f <- repp(prior=dnorm(0:40,m=10,s=5), tt=30, fpr=0.03)
g <- repp(prior=dnorm(0:40,m=20,s=5), tt=30, fpr=0.03)
h <- repp(prior=dnorm(0:40,m=30,s=5), tt=30, fpr=0.03)
layout(matrix(1:2,1,2))
boxplot(lapply(list(a,b,c,d,e,f,g,h), function(x) unlist(x["final",])))
boxplot(lapply(list(a,b,c,d,e,f,g,h), function(x) unlist(x["npres",])))
##############################################
# This section is for multiple ZESTs
##############################################
makeStimHelper <- function(db,n, x, y) { # returns a function of (db,n)
ff <- function(db, n) db+n
body(ff) <- substitute({
s <- list(x=x, y=y, level=dbTocd(db), size=0.43, color="white",
duration=200, responseWindow=1500, checkFixationOK=NULL)
class(s) <- "opiStaticStimulus"
return(s)
}, list(x=x,y=y))
return(ff)
}
# List of (x, y, true threshold) triples
locations <- list(c(9,9,30), c(-9,-9,32), c(9,-9,31), c(-9,9,33))
# Setup starting states for each location
states <- lapply(locations, function(loc) {
ZEST.start(
domain=-5:45,
minStimulus=0,
maxStimulus=40,
makeStim=makeStimHelper(db,n,loc[1],loc[2]),
stopType="S", stopValue= 1.5, tt=loc[3], fpr=0.03, fnr=0.01)})
# Loop through until all states are "stop"
while(!all(st <- unlist(lapply(states, ZEST.stop)))) {
i <- which(!st) # choose a random,
i <- i[runif(1, min=1, max=length(i))] # unstopped state
r <- ZEST.step(states[[i]]) # step it
states[[i]] <- r$state # update the states
}
finals <- lapply(states, ZEST.final) # get final estimates of threshold
for(i in 1:length(locations)) {
#cat(sprintf("Location (%+2d,%+2d) ",locations[[i]][1], locations[[i]][2]))
#cat(sprintf("has threshold %4.2f\n", finals[[i]]))
}
if (!is.null(opiClose()$err))
warning("opiClose() failed")