triangular.test.norm {OPDOE} | R Documentation |
Triangular Test for Normal Data
Description
Performs a sequential test, compares means of two normally distributed groups.
Usage
triangular.test.norm(x, y = NULL, mu0 = NULL, mu1, mu2 = NULL,
delta = NULL, sigma = NULL, sigma2 = NULL,
alpha = 0.05, beta = 0.1, plot = TRUE)
Arguments
x |
initial data for group |
y |
initial data for group |
mu0 |
specifies Null and alternative hypothesis, see Details below. |
mu1 |
specifies Null and alternative hypothesis, see Details below. |
mu2 |
specifies Null and alternative hypothesis, see Details below. |
delta |
The minimum difference to be detected, alternative way to specify |
sigma |
prior sigma. |
sigma2 |
prior sigma for group 2 if different than for grouop 1. |
alpha |
Risk of 1st kind |
beta |
Risk of 2nd kind |
plot |
logical, indicates whether a initial plot should be generated. |
Details
One-sample:
This function performs a one- or two-sided sequential Test for
\mu=\code{mu1}
versus
\mu>\code{mu2}
, if mu2
> mu1
(one-sided)
\mu<\code{mu2}
, if mu2
< mu1
(one-sided)
\mu<\code{mu0}
or \mu>\code{mu2}
,
if mu2
> mu1
and mu0
<
mu1
(two-sided, possibly unsymmetric)
Two-sample:
This function performs a one- or two-sided sequential Test for equal
means \mu_1=\code{mu1}
\mu_2=\code{mu1}
in both groups versus
\mu_2>\code{mu2}
, if mu2
> mu1
(one-sided)
\mu_2<\code{mu2}
, if mu2
< mu1
(one-sided)
\mu_2<\code{mu0}
or \mu_2>\code{mu2}
,
if mu2
> mu1
and mu0
<
mu1
(two-sided, possibly unsymmetric)
Value
An object of class triangular.test
, to be used for
later update steps.
Note
A two-sided test may be specified by supplying both mu1
and
mu2
, even unsymmetric if needed.
Author(s)
Dieter Rasch, Juergen Pilz, L.R. Verdooren, Albrecht Gebhardt
References
Dieter Rasch, Juergen Pilz, L.R. Verdooren, Albrecht Gebhardt: Optimal Experimental Design with R, Chapman and Hall/CRC, 2011
See Also
triangular.test
, triangular.test.prop
, update.triangular.test
Examples
data(heights)
attach(heights)
# a symmetric two sided alternative:
tt <- triangular.test.norm(x=female[1:3],
y=male[1:3], mu1=170,mu2=176,mu0=164,
alpha=0.05, beta=0.2,sigma=7)
# Test is yet unfinished, add the remaining values step by step:
tt <- update(tt,x=female[4])
tt <- update(tt,y=male[4])
tt <- update(tt,x=female[5])
tt <- update(tt,y=male[5])
tt <- update(tt,x=female[6])
tt <- update(tt,y=male[6])
tt <- update(tt,x=female[7])
tt <- update(tt,y=male[7])
# Test is finished now
# an unsymmetric two sided alternative:
tt2 <- triangular.test.norm(x=female[1:3],
y=male[1:3], mu1=170,mu2=180,mu0=162,
alpha=0.05, beta=0.2,sigma=7)
tt2 <- update(tt2,x=female[4])