size_b.three_way {OPDOE} | R Documentation |
Three-way analysis of variance – nested and mixed classification A\succ B \succ C
and (A\times B)\succ C
model III, IV and VII
Description
Returns the optimal number of levels for factor B.
Usage
size_b.three_way_mixed_ab_in_c.model_3_a(alpha, beta, delta, a, c, n, cases)
Arguments
alpha |
Risk of 1st kind |
beta |
Risk of 2nd kind |
delta |
The minimum difference to be detected |
a |
Number of levels of fixed factor A |
c |
Number of levels of fixed factor C |
n |
Number of replications |
cases |
Specifies whether the |
Details
see chapter 3 in the referenced book
Value
Integer giving the size.
Note
Better use size.anova
which allows a cleaner notation.
Author(s)
Dieter Rasch, Juergen Pilz, L.R. Verdooren, Albrecht Gebhardt, Minghui Wang
References
Dieter Rasch, Juergen Pilz, L.R. Verdooren, Albrecht Gebhardt: Optimal Experimental Design with R, Chapman and Hall/CRC, 2011
See Also
Examples
size_b.three_way_mixed_ab_in_c.model_3_a(0.05, 0.1, 0.5, 6, 5, 1, "maximin")
size_b.three_way_mixed_ab_in_c.model_3_a(0.05, 0.1, 0.5, 6, 5, 1, "minimin")
size_b.three_way_mixed_cxbina.model_4_a(0.05, 0.1, 0.5, 6, 4, 1, "maximin")
size_b.three_way_mixed_cxbina.model_4_a(0.05, 0.1, 0.5, 6, 4, 1, "minimin")
size_b.three_way_mixed_cxbina.model_4_c(0.05, 0.1, 0.5, 6, 4, 1, "maximin")
size_b.three_way_mixed_cxbina.model_4_c(0.05, 0.1, 0.5, 6, 4, 1, "minimin")
size_b.three_way_mixed_cxbina.model_4_axc(0.05, 0.1, 0.5, 6, 4, 1, "maximin")
size_b.three_way_mixed_cxbina.model_4_axc(0.05, 0.1, 0.5, 6, 4, 1, "minimin")
size_b.three_way_nested.model_6_a(0.05, 0.1, 0.5, 6, 4, 2, "maximin")
size_b.three_way_nested.model_6_a(0.05, 0.1, 0.5, 6, 4, 2, "minimin")
[Package OPDOE version 1.0-10 Index]