gen.psi.tau.flat {OLCPM} | R Documentation |
calculate eigenvalue series by “flat” method
Description
This function calculates the rolling eigenvalue series for the monitoring process, based on the “flat” version of sample covanriance matrix.
Usage
gen.psi.tau.flat(
Y,
k,
m = ceiling(max(20, (dim(Y)[3])^(r/(r + 2)))),
delta,
r = 8
)
Arguments
Y |
the observed |
k |
a positive integer determining which eigenvalue to monitor.
|
m |
a positive integer ( |
delta |
a number in |
r |
a positive integer indicating the order of the transformation
function |
Details
The rolling eigenvalue series will start at the stage m+1
, with length
T-m
.
Value
a (T-m)\times 3
matrix, whose three columns are the original,
rescaled, and transformed eigenvalue series, respectively.
Author(s)
Yong He, Xinbing Kong, Lorenzo Trapani, Long Yu
References
He Y, Kong X, Trapani L, & Yu L(2021). Online change-point detection for matrix-valued time series with latent two-way factor structure. arXiv preprint, arXiv:2112.13479.
Examples
## generate data
k1=3
k2=3
epsilon=0.05
Sample_T=50
p1=40
p2=20
kmax=8
r=8
m=p2
# generate data
Y=gen.data(Sample_T,p1,p2,k1,k2,tau=0.5,change=1,pp=0.3)
# calculate delta
temp=log(p1)/log(m*p2)
delta=epsilon*(temp<=0.5)+(epsilon+1-1/(2*temp))*(temp>0.5)
# calculate psi.tau
psi2=gen.psi.tau.flat(Y,k1+1,m,delta,r)
print(psi2)