gen.data {OLCPM} | R Documentation |
generate data
Description
This function generates matrix-valued time series under a two-way factor structure with/without a change point.
Usage
gen.data(
Sample_T,
p1,
p2,
k1,
k2,
tau = 0.5,
change = 0,
pp = 0.3,
a = 0,
cc = 0
)
Arguments
Sample_T |
positive integer indicating the length of series. |
p1 |
positive integer indicating the row dimension. |
p2 |
positive integer indicating the column dimension. |
k1 |
positive integer indicating the number of row factors. |
k2 |
positive integer indicating the number of column factors. |
tau |
a real number in |
change |
the type of change, taking 0 for no change point, taking 1 for the case that the loading matrix R changes, taking other values for the case that a new row factor occurs. |
pp |
a number in |
a |
a number in |
cc |
a number in |
Details
See the paper He et al. (2021).
Value
a T\times p1 \times p2
array.
Author(s)
Yong He, Xinbing Kong, Lorenzo Trapani, Long Yu
References
He Y, Kong X, Trapani L, & Yu L(2021). Online change-point detection for matrix-valued time series with latent two-way factor structure. arXiv preprint, arXiv:2112.13479.
Examples
# set parameters
k1=3
k2=3
epsilon=0.05
Sample_T=50
p1=40
p2=20
# generate data
Y=gen.data(Sample_T,p1,p2,k1,k2,tau=0.5,change=1,pp=0.3)
print("the dimension of Y is:")
print(dim(Y))