| cv.OHPL {OHPL} | R Documentation | 
Cross-validation for Ordered Homogeneity Pursuit Lasso
Description
Use cross-validation to help select the optimal number
of variable groups and the value of gamma.
Usage
cv.OHPL(
  X.cal,
  y.cal,
  maxcomp,
  gamma = seq(0.1, 0.9, 0.1),
  X.test,
  y.test,
  cv.folds = 5L,
  G = 30L,
  type = c("max", "median"),
  scale = TRUE,
  pls.method = "simpls"
)
Arguments
X.cal | 
 Predictor matrix (training).  | 
y.cal | 
 Response matrix with one column (training).  | 
maxcomp | 
 Maximum number of components for PLS.  | 
gamma | 
 A vector of the gamma sequence between (0, 1).  | 
X.test | 
 X.test Predictor matrix (test).  | 
y.test | 
 y.test Response matrix with one column (test).  | 
cv.folds | 
 Number of cross-validation folds.  | 
G | 
 Maximum number of variable groups.  | 
type | 
 Find the maximum absolute correlation (  | 
scale | 
 Should the predictor matrix be scaled?
Default is   | 
pls.method | 
 Method for fitting the PLS model.
Default is   | 
Value
A list containing the optimal model, RMSEP, Q2, and other evaluation metrics. Also the optimal number of groups to use in group lasso.
Examples
data("wheat")
X <- wheat$x
y <- wheat$protein
n <- nrow(wheat$x)
set.seed(1001)
samp.idx <- sample(1L:n, round(n * 0.7))
X.cal <- X[samp.idx, ]
y.cal <- y[samp.idx]
X.test <- X[-samp.idx, ]
y.test <- y[-samp.idx]
# This could run for a while
## Not run: 
cv.fit <- cv.OHPL(
  x, y,
  maxcomp = 6, gamma = seq(0.1, 0.9, 0.1),
  x.test, y.test, cv.folds = 5, G = 30, type = "max"
)
# the optimal G and gamma
cv.fit$opt.G
cv.fit$opt.gamma
## End(Not run)