| OHPL {OHPL} | R Documentation | 
Ordered Homogeneity Pursuit Lasso
Description
Fits the ordered homogeneity pursuit lasso (OHPL) model.
Usage
OHPL(
  x,
  y,
  maxcomp,
  gamma,
  cv.folds = 5L,
  G = 30L,
  type = c("max", "median"),
  scale = TRUE,
  pls.method = "simpls"
)
Arguments
x | 
 Predictor matrix.  | 
y | 
 Response matrix with one column.  | 
maxcomp | 
 Maximum number of components for PLS.  | 
gamma | 
 A number between (0, 1) for generating the gamma sequence.
An usual choice for gamma could be   | 
cv.folds | 
 Number of cross-validation folds.  | 
G | 
 Maximum number of variable groups.  | 
type | 
 Find the maximum absolute correlation (  | 
scale | 
 Should the predictor matrix be scaled? Default is   | 
pls.method | 
 Method for fitting the PLS model. Default is   | 
Value
A list of fitted OHPL model object with performance metrics.
References
You-Wu Lin, Nan Xiao, Li-Li Wang, Chuan-Quan Li, and Qing-Song Xu (2017). Ordered homogeneity pursuit lasso for group variable selection with applications to spectroscopic data. Chemometrics and Intelligent Laboratory Systems 168, 62–71.
Examples
# Generate simulation data
dat <- OHPL.sim(
  n = 100, p = 100, rho = 0.8,
  coef = rep(1, 10), snr = 3, p.train = 0.5,
  seed = 1010
)
# Split training and test set
x <- dat$x.tr
y <- dat$y.tr
x.test <- dat$x.te
y.test <- dat$y.te
# Fit the OHPL model
fit <- OHPL(x, y, maxcomp = 3, gamma = 0.5, G = 10, type = "max")
# Selected variables
fit$Vsel
# Make predictions
y.pred <- predict(fit, x.test)
# Compute evaluation metric RMSEP, Q2 and MAE for the test set
perf <- OHPL.RMSEP(fit, x.test, y.test)
perf$RMSEP
perf$Q2
perf$MAE