plot.ODEmorris {ODEsensitivity} | R Documentation |
Plot of the Results of Morris Screening for Objects of Class ODEmorris
Description
plot.ODEmorris
plots the results of Morris screening for objects of
class ODEmorris
.
Usage
## S3 method for class 'ODEmorris'
plot(x, pars_plot = NULL, state_plot = names(x)[1],
kind = "sep", colors_pars = NULL, main_title = NULL,
legendPos = "outside", type = "l", ...)
Arguments
x |
[ |
pars_plot |
[ |
state_plot |
[ |
kind |
[ |
colors_pars |
[ |
main_title |
[ |
legendPos |
[ |
type |
[ |
... |
additional arguments passed to |
Details
Morris sensitivity indices are plotted for one state variable (chosen by
argument state_plot
) and the parameters named in pars_plot
.
If no parameters are named in pars_plot
, the sensitivity indices for
all parameters are plotted. There are two kinds of plots:
kind = "sep"
: separate plots of the Morris sensitivity indices\mu^*
and\sigma
against timekind = "trajec"
: plot of\mu^*
against\sigma
Value
TRUE
(invisible; for testing purposes).
Note
Not all plotting arguments can be passed by ...
, for example
xlab
and ylab
are fixed.
Author(s)
Stefan Theers, Frank Weber
See Also
Examples
##### Lotka-Volterra equations #####
LVmod <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {
Ingestion <- rIng * Prey * Predator
GrowthPrey <- rGrow * Prey * (1 - Prey/K)
MortPredator <- rMort * Predator
dPrey <- GrowthPrey - Ingestion
dPredator <- Ingestion * assEff - MortPredator
return(list(c(dPrey, dPredator)))
})
}
LVpars <- c("rIng", "rGrow", "rMort", "assEff", "K")
LVbinf <- c(0.05, 0.05, 0.05, 0.05, 1)
LVbsup <- c(1.00, 3.00, 0.95, 0.95, 20)
LVinit <- c(Prey = 1, Predator = 2)
LVtimes <- c(0.01, seq(1, 50, by = 1))
set.seed(7292)
# Warning: The following code might take very long!
LVres_morris <- ODEmorris(mod = LVmod,
pars = LVpars,
state_init = LVinit,
times = LVtimes,
binf = LVbinf,
bsup = LVbsup,
r = 500,
design = list(type = "oat",
levels = 10, grid.jump = 1),
scale = TRUE,
ode_method = "lsoda",
parallel_eval = TRUE,
parallel_eval_ncores = 2)
my_cols <- c("firebrick", "orange2", "dodgerblue",
"forestgreen", "black")
plot(LVres_morris, kind = "sep", colors_pars = my_cols)
plot(LVres_morris, pars_plot = c("rGrow", "rMort"), state_plot = "Predator",
kind = "trajec", colors_pars = my_cols[2:3])
##### A network of 4 mechanical oscillators connected in a circle #####
M_mat <- rep(2, 4)
K_mat <- diag(rep(2 * (2*pi*0.17)^2, 4))
K_mat[1, 2] <- K_mat[2, 3] <-
K_mat[3, 4] <- K_mat[1, 4] <- 2 * (2*pi*0.17)^2 / 10
D_mat <- diag(rep(0.05, 4))
library("ODEnetwork")
lfonet <- ODEnetwork(masses = M_mat, dampers = D_mat, springs = K_mat)
LFOpars <- c("k.1", "k.2", "k.3", "k.4",
"d.1", "d.2", "d.3", "d.4")
LFObinf <- c(rep(0.2, 4), rep(0.01, 4))
LFObsup <- c(rep(20, 4), rep(0.1, 4))
lfonet <- setState(lfonet, state1 = rep(2, 4), state2 = rep(0, 4))
LFOtimes <- seq(25, 150, by = 2.5)
set.seed(283)
# Warning: The following code might take very long!
LFOres_morris <- ODEmorris(mod = lfonet,
pars = LFOpars,
times = LFOtimes,
binf = LFObinf,
bsup = LFObsup,
r = 500,
design = list(type = "oat",
levels = 10, grid.jump = 1),
scale = TRUE,
parallel_eval = TRUE,
parallel_eval_ncores = 2)
plot(LFOres_morris, pars_plot = paste0("k.", 1:4), state_plot = "x.2",
kind = "sep", colors_pars = my_cols)