OBMb {OBMbpkg} | R Documentation |
Objective Bayesian Analysis for the Mb Capture-Recapture Model
Description
Applies an objective Bayesian method on to the Mb capturere-capture model to estimate the population size N.
Usage
OBMb(k, n, M, x, CI1 = 0.025, CI2 = 0.975, max = 10000, IFMLE = TRUE)
Arguments
k |
Number of sampling occasions |
n |
Total number of distinct animals captured |
M |
Number of marked animals captured in all sampling occasions |
x |
The number of new animals captured at each sampling occasion |
CI1 |
Lower confidence level |
CI2 |
Upper confidence level |
max |
The maximum of function evaluations used for computing the integrated likelihood L(N|X) |
IFMLE |
Logical, will also print MLE results if TRUE |
Value
EMEAN: Posterior mean for N
EMEDIAN: Posterior median for N
-
OBCI: Credible interval values based on the quantiles specified by CI1 and CI2
-
MLE: If IFMLE==TRUE, this is the frequentist MLE for N
-
Ep: If IFMLE==TRUE, the frequentist estimate of the initial capture probability p
-
MLECI: If IFMLE==TRUE, confidence interval for the MLE quantile specified by CI2
Examples
# Data simulation example
k=10
tN=600 #True N
p=0.06
JN=rep(0,k+1)
N=rep(0,k)
x=rep(0,k)
for (j in 1:k){
N[j]=tN-JN[j]
x[j]=rbinom(1,N[j],p)
JN[j+1]=JN[j]+x[j]
}
M=sum(JN[1:k])
n=JN[k+1]
OBMb(k=k,n=n,M=M,x=x)
#Deer mouse example from Otis et al 1978
Data<-c(15, 8, 6, 3, 3, 3) #new animals captured at each sampling occasion
OBMb(k=6,n=38,M=134,x=Data)