intmnorm {OBASpatial} | R Documentation |
Marginal posterior density for a model.
Description
It calculates the marginal density density for a model (up to a proportionality constant) for the NSR model using the based reference, Jeffreys' rule, Jeffreys' independent and vague priors. In this context
corresponds to the range parameter.
Usage
intmnorm(formula,prior="reference",coords.col=1:2,kappa=0.5,
cov.model="exponential",data,asigma=2.1,intphi,maxEval)
Arguments
formula |
A valid formula for a linear regression model. |
prior |
Objective prior densities avaiable for the TSR model: ( |
coords.col |
A vector with the column numbers corresponding to the spatial coordinates. |
kappa |
Shape parameter of the covariance function (fixed). |
cov.model |
Covariance functions available for the TSR
model. |
data |
Data set with 2D spatial coordinates, the response and optional covariates. |
asigma |
Value of |
intphi |
An interval for |
maxEval |
Maximum number of iterations for the integral computation. |
Details
Let a parametric model with parameter vector
. Under the TSR model and the prior density proposal:
we have that the marginal density is given by:
This quantity can be useful as a criteria for model selection. The computation of could be compute demanding depending on the number of iterations in
maxEval
.
Value
Marginal density of the model for the reference based, Jeffreys' rule, Jeffreys' independent and vague priors.
Author(s)
Jose A. Ordonez, Marcos O. Prates, Larissa A. Matos, Victor H. Lachos.
References
Berger, J.O, De Oliveira, V. and Sanso, B. (2001). Objective Bayesian Analysis of Spatially Correlated Data. Journal of the American Statistical Association., 96, 1361 – 1374.
See Also
dnsrposoba
,dtsrprioroba
,dnsrprioroba
Examples
data(dataca20)
set.seed(25)
data(dataelev)## data using by Berger et. al (2001)
######### Using reference prior ###########
m1=intmnorm(prior="reference",formula=elevation~1,
kappa=0.5,cov.model="matern",data=dataelev,maxEval=1000)
log(m1)
######### Using reference prior kappa=1 ###########
m2=intmnorm(prior="reference",formula=elevation~1,
kappa=1,cov.model="matern",data=dataelev,maxEval=1000)
log(m2)
######### Using reference prior kappa=1.5 ###########
m3=intmnorm(prior="reference",formula=elevation~1
,kappa=1.5,cov.model="matern",data=dataelev,maxEval=1000)
log(m3)
tot=m1+m2+m3
########posterior probabilities: higher probability:
#########prior="reference", kappa=1
p1=m1/tot
p2=m2/tot
p3=m3/tot