intmT {OBASpatial} | R Documentation |
Marginal posterior density for a model.
Description
It calculates the marginal density density for a model M
(up to a proportionality constant) for the TSR model using the based reference, Jeffreys' rule, Jeffreys' independent and vague priors. In this context \phi
corresponds to the range parameter and \nu
to the degrees of freedom.
Usage
intmT(formula,prior="reference",coords.col=1:2,kappa=0.5,
cov.model="exponential",data,asigma,intphi="default",intnu=c(4.1,Inf),maxEval)
Arguments
formula |
A valid formula for a linear regression model. |
prior |
Objective prior densities avaiable for the TSR model: ( |
coords.col |
A vector with the column numbers corresponding to the spatial coordinates. |
kappa |
Shape parameter of the covariance function (fixed). |
cov.model |
Covariance functions available for the TSR
model. |
data |
Data set with 2D spatial coordinates, the response and optional covariates. |
asigma |
Value of |
intphi |
An interval for |
intnu |
An interval for |
maxEval |
Maximum number of iterations for the integral computation. |
Details
Let m_k
a parametric model with parameter vector \theta_k
. Under the TSR model and the prior density proposal:
\frac{\pi(\phi,\nu)}{(\sigma^2)^a}
we have that the marginal density is given by:
\int L(\theta_{m_k})\pi(m_k)dm_k
This quantity can be useful as a criteria for model selection. The computation of m_k
could be compute demanding depending on the number of iterations in maxEval
.
Value
Marginal density of the model m_k
for the reference based, Jeffreys' rule, Jeffreys' independent and vague priors.
Author(s)
Jose A. Ordonez, Marcos O. Prates, Larissa A. Matos, Victor H. Lachos.
References
Ordonez, J.A, M.O. Prattes, L.A. Matos, and V.H. Lachos (2020+). Objective Bayesian analysis for spatial Student-t regression models (Submitted).
See Also
dnsrposoba
,dtsrprioroba
,dnsrprioroba
Examples
set.seed(25)
data(dataca20)
######### Using reference prior ###########
m1=intmT(prior="reference",formula=calcont~altitude+area,
kappa=0.3,cov.model="matern",data=dataca20,maxEval=1000)
######### Using Jeffreys' rule prior ###########
m1j=intmT(prior="jef.rul",formula=calcont~altitude+area,
kappa=0.3,cov.model="matern",data=dataca20,maxEval=1000)
######### Using Jeffreys' independent prior ###########
m1ji=intmT(prior="jef.ind",formula=calcont~altitude+area
,kappa=0.3,cov.model="matern",data=dataca20,maxEval=1000)
m1v=intmT(prior="vague",formula=calcont~altitude+area
,kappa=0.3,cov.model="matern",data=dataca20,maxEval=1000,intphi="default")
tot=m1+m1j+m1ji+m1v
########posterior probabilities: higher probability:
#########prior="reference", kappa=0.3
p1=m1/tot
pj=m1j/tot
pji=m1ji/tot
pv=m1v/tot