dtsrprioroba {OBASpatial} | R Documentation |
Objective prior density for the TSR model
Description
It calculates the density function \pi(\phi,\nu)
(up to a proportionality constant) for the TSR model using the based reference, Jeffreys' rule and Jeffreys' independent priors. In this context \phi
corresponds to the range parameter and \nu
to the degrees of freedom.
Usage
dtsrprioroba(x,trend="cte",prior="reference",coords.col=1:2,
kappa=0.5,cov.model="exponential",data)
Arguments
x |
A vector with the quanties |
trend |
Builds the trend matrix in accordance to a specification of the mean provided by the user. See |
prior |
Objective prior densities avaiable for the TSR model: ( |
coords.col |
A vector with the column numbers corresponding to the spatial coordinates. |
kappa |
Shape parameter of the covariance function (fixed) |
cov.model |
Covariance functions available for the TSR
model. |
data |
Data set with 2D spatial coordinates, the response and optional covariates |
Details
Denote as \bold{c}=(c_{1},c_{2})
the coordinates of a spatial location. trend
defines the design matrix as:
-
0
(zero,without design matrix) Only valid for the Independent Jeffreys' prior -
"cte"
, the design matrix is such that mean function\mu(\bold{c})=\mu
is constant over the region. -
"1st"
, the design matrix is such that mean function becames a first order polynomial on the coordinates:\mu(\bold(c))=\beta_0+ \beta_1c_1+\beta_2c_2
-
"2nd"
, the design matrix is such that mean function\mu(\bold{c})=\mu
becames a second order polynomial on the coordinates:\mu(\bold(c))=\beta_0+ \beta_1c_1+\beta_2c_2 + \beta_3c_{1}^2+ \beta_4c_{2}^2+ \beta_5c_1c_2
-
~model
a model specification to include covariates (external trend) in the model.
Value
Density of x=(\phi,\nu
)
Author(s)
Jose A. Ordonez, Marcos O. Prates, Larissa A. Matos, Victor H. Lachos.
References
Ordonez, J.A, M.O. Prattes, L.A. Matos, and V.H. Lachos (2020+). Objective Bayesian analysis for spatial Student-t regression models (Submitted).
See Also
dtsrposoba
,dnsrprioroba
,dnsrposoba
Examples
data(dataca20)
######### Using reference prior and a constant trend###########
dtsrprioroba(x=c(6,100),kappa=0.3,cov.model="matern",data=dataca20)
######### Using jef.rule prior and 1st trend###########
dtsrprioroba(x=c(6,100),prior="jef.rul",trend=~altitude+area,
kappa=0.3,cov.model="matern",data=dataca20)
######### Using jef.ind prior ###########
dtsrprioroba(x=c(6,100),prior="jef.ind",trend=0,
kappa=0.3,cov.model="matern",data=dataca20)