dtsrposoba {OBASpatial} | R Documentation |
Objective posterior density for the TSR model
Description
It calculates the density function \pi(\phi,\nu)
(up to a proportionality constant) for the TSR model using the based reference, Jeffreys' rule, Jeffreys' independent and vague priors. In this context \phi
corresponds to the range parameter and \nu
to the degrees of freedom.
Usage
dtsrposoba(x,formula,prior="reference",coords.col=1:2,
kappa=0.5,cov.model="exponential",data,asigma=2.1,intphi,intnu)
Arguments
x |
A vector with the quanties |
formula |
A valid formula for a linear regression model. |
prior |
Objective prior densities avaiable for the TSR model: ( |
coords.col |
A vector with the column numbers corresponding to the spatial coordinates. |
kappa |
Shape parameter of the covariance function (fixed). |
cov.model |
Covariance functions available for the TSR
model. |
data |
Data set with 2D spatial coordinates, the response and optional covariates. |
asigma |
Value of |
intphi |
An interval for |
intnu |
An interval for |
Details
The posterior distribution is computed for this priors under the improper family \frac{\pi(\phi,\nu)}{(\sigma^2)^a}
. For the vague prior, it was considered the structure \pi(\phi,\nu,\lambda)=\phi(\phi)\pi(\nu|\lambda)\pi(\lambda)
where a priori, \phi
follows an uniform distribution on the interval intphi
, \nu|\lambda~ Texp(\lambda,A)
with A the interval given by the argument intnu
and \lambda~unif(0.02,0.5)
.
For the Jeffreys independent prior, this family of priors generates improper posterior distribution when intercept is considered for the mean function.
Value
Posterior density of x=(\phi,\nu
) for the reference based, Jeffreys' rule and Jeffreys' independent priors. For the vague the result is the posterior density of x=(\phi,\nu,\lambda
)
Author(s)
Jose A. Ordonez, Marcos O. Prates, Larissa A. Matos, Victor H. Lachos.
References
Ordonez, J.A, M.O. Prattes, L.A. Matos, and V.H. Lachos (2020+). Objective Bayesian analysis for spatial Student-t regression models (Submitted).
See Also
dnsrposoba
,dtsrprioroba
,dnsrprioroba
Examples
data(dataca20)
######### Using reference prior ###########
dtsrposoba(x=c(5,11),prior="reference",formula=calcont~altitude+area,
kappa=0.3,cov.model="matern",data=dataca20)
######### Using Jeffreys' rule prior ###########
dtsrposoba(x=c(5,11),prior="jef.rul",formula=calcont~altitude+area,
kappa=0.3,cov.model="matern",data=dataca20)
######### Using Jeffreys' independent prior ###########
dtsrposoba(x=c(5,11),prior="jef.ind",formula=calcont~altitude+area
,kappa=0.3,cov.model="matern",data=dataca20)
######### Using vague independent prior ###########
dtsrposoba(x=c(5,11,.3),prior="vague",formula=calcont~altitude+area,
kappa=0.3,cov.model="matern",data=dataca20,intphi=c(0.1,10),
intnu=c(4.1,30))