Stage.2.NormTable {NormData} | R Documentation |
Derive a normative table
Description
This function allows for deriving a normative table that shows percentile ranks \hat{\pi}_0
that correspond to a wide range of raw test scores Y_0
(stratified by the relevant independent variables).
Usage
Stage.2.NormTable(Stage.1.Model, Assume.Homoscedasticity,
Assume.Normality, Grid.Norm.Table, Test.Scores, Digits=6,
Rounded=TRUE)
Arguments
Stage.1.Model |
A fitted object of class |
Assume.Homoscedasticity |
Logical. Should homoscedasticity be assumed when deriving the normative table? By default, homoscedasticity is assumed when the |
Assume.Normality |
Logical. Should normality of the standardized errors be assumed when deriving the normative table? By default, normality is assumed when the |
Grid.Norm.Table |
A When multiple independent variables are considered, the |
Test.Scores |
A vector that specifies the raw test scores that should be shown in the normative table. |
Rounded |
Logical. Should the percentile ranks that are shown in the normative table be rounded to a whole number? Default |
Digits |
The number of digits that need to be shown in the normative table for the predicted means and residual standard errors. Default |
Details
For details, see Van der Elst (2023).
Value
An object of class Stage.2.NormTable
with components,
Norm.Table |
The normative table. |
Group.Specific.SD.Resid |
Logical. Where prediction-specific SDs of the residuals used? |
Empirical.Dist.Delta |
Logical. Was the CDF of the standardized residuals used to convert the raw test scores into percentile ranks? |
N.Analysis |
The sample size of the analyzed dataset. |
Test.Scores |
A vector of raw test scores for which percentile ranks were requested. |
Assume.Homoscedasticity |
Is homoscedasticity assumed in the computation of the normative data? |
Assume.Normality |
Is normality assumed in the computation of the normative data? |
Stage.1.Model |
The |
Grid.Norm.Table |
The specified |
Digits.Percentile |
The number of digits after the decimal point that were requested for the percentile ranks. |
Author(s)
Wim Van der Elst
References
Van der Elst, W. (2024). Regression-based normative data for psychological assessment: A hands-on approach using R. Springer Nature.
See Also
Stage.2.NormScore
, Stage.2.AutoScore
, Bootstrap.Stage.2.NormScore
Examples
# Replicate the normative table that was obtained in
# Case study 1 of Chapter 3 in Van der Elst (2023)
# -----------------------------------------------------
library(NormData) # load the NormData package
data(GCSE) # load the GCSE dataset
# Fit the Stage 1 model
Model.1.GCSE <- Stage.1(Dataset=GCSE,
Model=Science.Exam~Gender)
# Make a normative table for raw Science Exam scores = 10,
# 11, ... 85, stratified by Gender
NormTable.GCSE <- Stage.2.NormTable(Stage.1.Model=Model.1.GCSE,
Test.Scores=c(10:85),
Grid.Norm.Table=data.frame(Gender=c("F", "M")))
summary(NormTable.GCSE)
# Replicate the normative table that was obtained in
# Case study 1 of Chapter 7 in Van der Elst (2023)
# ------------------------------------------------
library(NormData) # load the NormData package
data(Substitution) # load the Substitution dataset
# Make the new variable Age.C (= Age centered) that is
# needed to fit the final Stage 1 model,
# and add it to the Substitution dataset
Substitution$Age.C <- Substitution$Age - 50
# Fit the final Stage 1 model
Substitution.Model.9 <- Stage.1(Dataset=Substitution,
Alpha=0.005, Model=LDST~Age.C+LE, Order.Poly.Var=1)
# Make a normative table for LDST scores = 10, 12, ... 56,
# stratified by Age and LE
NormTable.LDST <- Stage.2.NormTable(
Stage.1.Model=Substitution.Model.9,
Test.Scores=seq(from=10, to=56, by=2),
Grid.Norm.Table=expand.grid(Age.C=seq(from=-30, to=30, by=1),
LE=c("Low", "Average", "High")))