Densities {NormData} | R Documentation |
Plot densities
Description
Plot densities for an outcome for different subgroups.
Usage
Densities(Dataset, Test.Score, IV, Color=TRUE,
Size.Legend=1, xlab="Test score", main, ...)
Arguments
Dataset |
The name of the dataset. |
Test.Score |
The name of the outcome variable (e.g., a raw test score). |
IV |
The name of the stratification variable, that defines for which subgroups density plots should be provided. If |
Color |
Logical. Should densities for different subgroups be depicted in color? Default |
Size.Legend |
The size of the legend in the plot. Default |
xlab |
The label on the X-axis. Default |
main |
The title of the plot. |
... |
Other arguments to be passed to the |
Value
No return value, called for side effects.
Author(s)
Wim Van der Elst
References
Van der Elst, W. (2024). Regression-based normative data for psychological assessment: A hands-on approach using R. Springer Nature.
Examples
# Plot Gender-specific densities of the raw science exam
# scores in the GCSE dataset
data(GCSE)
Densities(Dataset = GCSE, Test.Score = Science.Exam, IV=Gender)
# Plot LE-specific densities of the residuals of a model
# where the Openness scale score is regressed on LE
data(Personality)
Fit <- Stage.1(Dataset = Personality, Model = Openness~LE)
summary(Fit)
Data.With.Residuals <- data.frame(Personality,
Fit$HomoNorm$Residuals)
Densities(Dataset = Data.With.Residuals,
Test.Score = Fit.HomoNorm.Residuals, IV = LE)