generic_jackknife_variance {NonProbEst} | R Documentation |
Calculates Jackknife variance with reweighting for an arbitrary estimator
Description
Calculates the variance of a given estimator by Leave-One-Out Jackknife (Quenouille, 1956) with reweighting in each iteration.
Usage
generic_jackknife_variance(sample, estimator, N = NULL)
Arguments
sample |
Data frame containing the non-probabilistic sample. |
estimator |
Function that, given a sample as a parameter, returns an estimation. |
N |
Integer indicating the population size. Optional. |
Details
The estimation of the variance requires a recalculation of the estimates in each iteration which might involve weighting adjustments, leading to an increase in computation time. It is expected that the estimated variance captures the weighting adjustments' variability and the estimator's variability.
Value
The resulting variance.
References
Quenouille, M. H. (1956). Notes on bias in estimation. Biometrika, 43(3/4), 353-360.
Examples
covariates = c("education_primaria", "education_secundaria",
"age", "sex", "language")
if (is.numeric(sampleNP$vote_gen))
sampleNP$vote_gen = factor(sampleNP$vote_gen, c(0, 1), c('F', 'T'))
vote_gen_estimator = function(sample) {
model_based(sample, population, covariates,
"vote_gen", positive_label = 'T', algorithm = 'glmnet')
}
generic_jackknife_variance(sampleNP, vote_gen_estimator)
[Package NonProbEst version 0.2.4 Index]