betag {Newdistns} | R Documentation |
Beta G Distribution
Description
Computes the pdf, cdf, quantile and random numbers of the beta G distribution due to Eugene et al. (2002) specified by the pdf
f (x) = \frac {\displaystyle 1}{\displaystyle B(a,b)} g(x)\left[ G(x) \right]^{a - 1} \left[ 1 - G(x) \right]^{b - 1}
for G
any valid cdf, g
the corresponding pdf, a > 0
, the first shape parameter, and b > 0
, the second shape parameter. Also computes the Cramer-von Misses statistic, Anderson Darling statistic, Kolmogorov Smirnov test statistic and p-value, maximum likelihood estimates, Akaike Information Criterion, Consistent Akaikes Information Criterion, Bayesian Information Criterion, Hannan-Quinn information criterion, standard errors of the maximum likelihood estimates, minimum value of the negative log-likelihood function and convergence status when the distribution is fitted to some data
Usage
dbetag(x, spec, a = 1, b = 1, log = FALSE, ...)
pbetag(x, spec, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...)
qbetag(p, spec, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...)
rbetag(n, spec, a = 1, b = 1, ...)
mbetag(g, data, starts, method = "BFGS")
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed |
p |
scaler or vector of probabilities at which the quantile needs to be computed |
n |
number of random numbers to be generated |
a |
the value of the first shape parameter, must be positive, the default is 1 |
b |
the value of the second shape parameter, must be positive, the default is 1 |
spec |
a character string specifying the distribution of G and g (for example, "norm" if G and g correspond to the standard normal). |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
... |
other parameters |
g |
same as spec but must be one of chisquare ("chisq"), exponential ("exp"), F ("f"), gamma ("gamma"), lognormal ("lognormal"), Weibull ("weibull"), Burr XII ("burrxii"), Chen ("chen"), Frechet ("frechet"), Gompertz ("gompertz"), linear failure rate ("lfr"), log-logistic ("log-logistic"), Lomax ("lomax") and Rayleigh ("rayleigh"). Each of these distributions has one parameter ( |
data |
a vector of data values for which the distribution is to be fitted |
starts |
initial values of |
method |
the method for optimizing the log likelihood function. It can be one of |
Value
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the quantile values computed at p
or an object of the same length as n
, giving the random numbers generated or an object giving the values of Cramer-von Misses statistic, Anderson Darling statistic, Kolmogorov Smirnov test statistic and p-value, maximum likelihood estimates, Akaike Information Criterion, Consistent Akaikes Information Criterion, Bayesian Information Criterion, Hannan-Quinn information criterion, standard errors of the maximum likelihood estimates, minimum value of the negative log-likelihood function and convergence status.
Author(s)
Saralees Nadarajah, Ricardo Rocha
References
S. Nadarajah and R. Rocha, Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software, 69(10), 1-32, doi:10.18637/jss.v069.i10
N. Eugene, C. Lee, F. Famoye, Beta-normal distribution and its applications, Communications in Statistics—Theory and Methods, 31 (2002) 497-512
Examples
x=runif(10,min=0,max=1)
dbetag(x,"exp",a=1,b=1)
pbetag(x,"exp",a=1,b=1)
qbetag(x,"exp",a=1,b=1)
rbetag(10,"exp",a=1,b=1)
mbetag("exp",rexp(100),starts=c(1,1,1),method="BFGS")