SensitivityPlots {NeuralSens} | R Documentation |
Plot sensitivities of a neural network model
Description
Function to plot the sensitivities created by SensAnalysisMLP
.
Usage
SensitivityPlots(
sens = NULL,
der = TRUE,
zoom = TRUE,
quit.legend = FALSE,
output = 1,
plot_type = NULL,
inp_var = NULL,
title = "Sensitivity Plots",
dodge_var = FALSE
)
Arguments
sens |
|
der |
|
zoom |
|
quit.legend |
|
output |
|
plot_type |
|
inp_var |
|
title |
|
dodge_var |
|
Value
List with the following plot for each output:
Plot 1: colorful plot with the classification of the classes in a 2D map
Plot 2: b/w plot with probability of the chosen class in a 2D map
Plot 3: plot with the stats::predictions of the data provided if param
der
isFALSE
References
Pizarroso J, Portela J, Muñoz A (2022). NeuralSens: Sensitivity Analysis of Neural Networks. Journal of Statistical Software, 102(7), 1-36.
Examples
## Load data -------------------------------------------------------------------
data("DAILY_DEMAND_TR")
fdata <- DAILY_DEMAND_TR
## Parameters of the NNET ------------------------------------------------------
hidden_neurons <- 5
iters <- 250
decay <- 0.1
################################################################################
######################### REGRESSION NNET #####################################
################################################################################
## Regression dataframe --------------------------------------------------------
# Scale the data
fdata.Reg.tr <- fdata[,2:ncol(fdata)]
fdata.Reg.tr[,3] <- fdata.Reg.tr[,3]/10
fdata.Reg.tr[,1] <- fdata.Reg.tr[,1]/1000
# Normalize the data for some models
preProc <- caret::preProcess(fdata.Reg.tr, method = c("center","scale"))
nntrData <- predict(preProc, fdata.Reg.tr)
#' ## TRAIN nnet NNET --------------------------------------------------------
# Create a formula to train NNET
form <- paste(names(fdata.Reg.tr)[2:ncol(fdata.Reg.tr)], collapse = " + ")
form <- formula(paste(names(fdata.Reg.tr)[1], form, sep = " ~ "))
set.seed(150)
nnetmod <- nnet::nnet(form,
data = nntrData,
linear.output = TRUE,
size = hidden_neurons,
decay = decay,
maxit = iters)
# Try SensAnalysisMLP
sens <- NeuralSens::SensAnalysisMLP(nnetmod, trData = nntrData, plot = FALSE)
NeuralSens::SensitivityPlots(sens)