threshold {NetworkToolbox} | R Documentation |
Threshold Network Estimation Methods
Description
Filters the network based on an r-value, alpha, adaptive alpha, bonferroni, false-discovery rate (FDR), or proportional density (fixed number of edges) value
Usage
threshold(
data,
a,
thresh = c("alpha", "adaptive", "bonferroni", "FDR", "proportional"),
normal = FALSE,
na.data = c("pairwise", "listwise", "fiml", "none"),
...
)
Arguments
data |
Can be a dataset or a correlation matrix |
a |
When |
thresh |
Sets threshold. Defaults to |
normal |
Should data be transformed to a normal distribution? Defaults to FALSE. Data is not transformed to be normal. Set to TRUE if data should be transformed to be normal (computes correlations using the cor_auto function) |
na.data |
How should missing data be handled?
For |
... |
Value
Returns a list containing:
A |
The filtered adjacency matrix |
r.cv |
The critical correlation value used to filter the network |
Author(s)
Alexander Christensen <alexpaulchristensen@gmail.com>
References
Strimmer, K. (2008). fdrtool: A versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics, 24, 1461-1462.
Examples
threshnet<-threshold(neoOpen)
alphanet<-threshold(neoOpen, thresh = "alpha", a = .05)
bonnet<-threshold(neoOpen, thresh = "bonferroni", a = .05)
FDRnet<-threshold(neoOpen, thresh = "FDR", a = .10)
propnet<-threshold(neoOpen, thresh = "proportional", a = .15)