stable {NetworkToolbox} | R Documentation |
Stabilizing Nodes
Description
Computes the within-community centrality for each node in the network
Usage
stable(
A,
comm = c("walktrap", "louvain"),
cent = c("betweenness", "rspbc", "closeness", "strength", "degree", "hybrid"),
absolute = TRUE,
diagonal = 0,
...
)
Arguments
A |
An adjacency matrix of network data |
comm |
Can be a vector of community assignments or community detection algorithms
( |
cent |
Centrality measure to be used.
Defaults to |
absolute |
Should network use absolute weights?
Defaults to |
diagonal |
Sets the diagonal values of the |
... |
Additional arguments for |
Value
A matrix containing the within-community centrality value for each node
Author(s)
Alexander Christensen <alexpaulchristensen@gmail.com>
References
Blanken, T. F., Deserno, M. K., Dalege, J., Borsboom, D., Blanken, P., Kerkhof, G. A., & Cramer, A. O. (2018). The role of stabilizing and communicating symptoms given overlapping communities in psychopathology networks. Scientific Reports, 8, 5854.
Examples
# Pearson's correlation only for CRAN checks
A <- TMFG(neoOpen, normal = FALSE)$A
stabilizing <- stable(A, comm = "walktrap")