smallworldness {NetworkToolbox} | R Documentation |
Small-worldness Measure
Description
Computes the small-worldness measure of a network
Usage
smallworldness(
A,
iter = 100,
progBar = FALSE,
method = c("HG", "rand", "TJHBL")
)
Arguments
A |
An adjacency matrix of network data |
iter |
Number of random (or lattice) networks to generate, which are used to calculate the mean random ASPL and CC (or lattice) |
progBar |
Defaults to |
method |
Defaults to |
Details
For "rand"
, values > 1 indicate a small-world network.
For "HG"
, values > 3 indicate a small-world network.
For "TJHBL"
, values near 0 indicate a small-world network,
while < 0 indicates a more regular network and > 0 indicates a more random network
Value
Returns a list containing:
swm |
Small-worldness value |
rASPL |
Global average shortest path length from random network |
lrCCt |
When |
Author(s)
Alexander Christensen <alexpaulchristensen@gmail.com>
References
Humphries, M. D., & Gurney, K. (2008). Network 'small-world-ness': A quantitative method for determining canonical network equivalence. PLoS one, 3, e0002051.
Telesford, Q. K., Joyce, K. E., Hayasaka, S., Burdette, J. H., & Laurienti, P. J. (2011). The ubiquity of small-world networks. Brain Connectivity, 1(5), 367-375.
Examples
# Pearson's correlation only for CRAN checks
A <- TMFG(neoOpen, normal = FALSE)$A
swmHG <- smallworldness(A, method="HG")
swmRand <- smallworldness(A, method="rand")
swmTJHBL <- smallworldness(A, method="TJHBL")