resp.rep {NetworkToolbox} | R Documentation |
Repeated Responses Check
Description
Screens data to identify potential cases of repeated responding.
The function is based on two criteria: no variance (i.e., a standard
deviation of zero for given responses)and frequency proportion of the
response values (which is set by freq.prop
). Note that these
criteria are highly related. Additional criteria will be added in
the future.
Usage
resp.rep(data, scale.lens = NULL, max.val, reverse = NULL, freq.prop = 0.8)
Arguments
data |
A dataset |
scale.lens |
The number of items for each scale in the data. A vector indicating the length for each scale to be checked in the data |
max.val |
Maximum value for data (or scales). If scales have different maximum values, then a vector must be input with each scale's maximum value (see examples) |
reverse |
Reverse scored responses. If responses have not yet reversed, then do not reverse them. If responses have been reversed, then a vector indicating which responses have been reverse-scored should be input (see examples). Can be TRUE/FALSE or 1/0 (reversed/not reversed) |
freq.prop |
Frequency proportion of the response values.
Allows the researcher to determine the maximum frequency proportion
of a certain response value is suspicious.
The default is set to |
Details
If a case is returned, then it does not mean that it is a bad case. Researchers should thoroughly inspect each case that is returned. A general guideline is that if a participant responded with all middle values (e.g., all 3's on a 5-point Likert scale), then they should be dropped. Note that a participant who responds with all maximum or minimum values may be a real case or a bad case. It is up to the researcher to decide and justify why or why not a case is kept.
Value
Returns a matrix when scale.lens = NULL
and a
list with elements corresponding to the order of scales. In general,
the output contains potential bad cases that should be further
inspected by the researcher.
Author(s)
Alexander Christensen <alexpaulchristensen@gmail.com>
Examples
#Re-reverse responses
rev.vec <- c(TRUE,FALSE,TRUE,FALSE,TRUE,TRUE,TRUE,FALSE,TRUE,FALSE,
TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,FALSE,TRUE,
FALSE,FALSE,TRUE,FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,FALSE,TRUE,
FALSE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE)
#Maximum value (5-point Likert scale)
mv.vec <- 5
#Repeated responses check
resp.rep(neoOpen, reverse = rev.vec, max.val = mv.vec)
#Example with multiple scales
#Facet scale lengths of NEO-PI-3 Openness to Experience
s.len <- c(8, 8, 8, 8, 8, 8)
#Maximum values
mv.vec <- c(5, 5, 5, 5, 5, 5)
#Re-reverse responses
rev.vec <- c(TRUE,FALSE,TRUE,FALSE,TRUE,TRUE,TRUE,FALSE,TRUE,FALSE,
TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,FALSE,TRUE,
FALSE,FALSE,TRUE,FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,FALSE,TRUE,
FALSE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE)
#Repeated responses check
resp.rep(neoOpen, scale.lens = s.len, max.val = mv.vec, reverse = rev.vec)