MFCF {NetworkToolbox} | R Documentation |
Maximally Filtered Clique Forest
Description
Applies the Maximally Filtered Clique Forest (MFCF) filtering method (Please see and cite Massara & Aste).
Usage
MFCF(
data,
cases = NULL,
na.data = c("pairwise", "listwise", "fiml", "none"),
time.series = FALSE,
gain.fxn = c("logLik", "logLik.val", "rSquared.val"),
min_size = 0,
max_size = 8,
pval = 0.05,
pen = 0,
drop_sep = FALSE,
use_returns = FALSE
)
Arguments
data |
Matrix (n |
cases |
Numeric. If |
na.data |
Character. How should missing data be handled?
|
time.series |
Boolean.
Is |
gain.fxn |
Character.
Gain function to be used for inclusion of nodes in cliques.
There are several options available
(see |
min_size |
Numeric. Minimum number of nodes allowed per
clique. Defaults to |
max_size |
Numeric. Maximum number of nodes allowed per
clique. Defaults to |
pval |
Numeric. p-value used to determine cut-offs for nodes to include in a clique |
pen |
Numeric. Multiplies the number of edges added to penalise complex models. Similar to the penalty term in AIC |
drop_sep |
Boolean. This parameter influences the MFCF only.
Defaults to |
use_returns |
Boolean. Only used in |
Value
Returns a list containing:
A |
MFCF filtered partial correlation network (adjacency matrix) |
J |
MFCF filtered inverse covariance matrix (precision matrix) |
cliques |
Cliques in the network
(output for |
separators |
Separators in the network
(output for |
Author(s)
Guido Previde Massara <gprevide@gmail.com> and Alexander Christensen <alexpaulchristensen@gmail.com>
References
Massara, G. P. & Aste, T. (2019). Learning clique forests. ArXiv.
Examples
# Load data
data <- neoOpen
## Not run:
# Use polychoric correlations and R-squared method
MFCF.net <- MFCF(qgraph::cor_auto(data), cases = nrow(neoOpen))$A
## End(Not run)