LoGo {NetworkToolbox} | R Documentation |
Local/Global Inversion Method
Description
Applies the Local/Global method to estimate
a Gaussian Graphical Model (GGM) using a TMFG
-filtered network
(see and cite Barfuss et al., 2016). Also used to
convert clique and separator structure from
MFCF
into partial correlation
and precision matrices
Usage
LoGo(
data,
cliques,
separators,
normal = TRUE,
na.data = c("pairwise", "listwise", "fiml", "none"),
partial = TRUE,
...
)
Arguments
data |
Must be a dataset |
cliques |
Cliques defined in the network. Input can be a list or matrix |
separators |
Separators defined in the network. Input can be a list or matrix |
normal |
Should data be transformed to a normal distribution?
Defaults to |
na.data |
How should missing data be handled?
For |
partial |
Should the output network's connections be the partial correlation between two nodes given all other nodes?
Defaults to |
... |
Additional arguments (deprecated arguments) |
Value
Returns the sparse LoGo-filtered inverse covariance matrix (partial = FALSE
)
or LoGo-filtered partial correlation matrix (partial = TRUE
)
Author(s)
Alexander Christensen <alexpaulchristensen@gmail.com>
References
Barfuss, W., Massara, G. P., Di Matteo, T., & Aste, T. (2016). Parsimonious modeling with information filtering networks. Physical Review E, 94, 062306.
Examples
# normal set to FALSE for CRAN tests
LoGonet <- LoGo(neoOpen, normal = FALSE, partial = TRUE)