Metrics {NetDA} | R Documentation |
Network-Based Discriminant Analysis Subject to Multi-Label Classes
Description
Implementation of discriminant analysis with network structures in predictors accommodated to do classification and prediction.
Usage
Metrics(yhat,Y_test)
Arguments
yhat |
an m-dimensional “vector” of the predicted values determined by NetDA. |
Y_test |
an m-dimensional “vector” of the response from the testing data. |
Details
This function aims to report the performance of classification results. The output includes confusion matrices and some commonly used criteria, such as precision, recall, F-score, and ARI.
Value
Confusion matrix |
A confusion matrix based on predicted values and responses from the testing data |
(PRE , REC , F-score) |
Values of precision (PRE), recall (REC), and F-score |
ARI |
Values of the adjusted Rand index (ARI) |
Author(s)
Chen, L.-P.
References
Chen, L.-P., Yi, G. Y., Zhang, Q., and He, W. (2019). Multiclass analysis and prediction with network structured covariates. Journal of Statistical Distributions and Applications, 6:6.
Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193-218.
See Also
Examples
data(WineData)
Y = WineData[,1] # the response
X = WineData[,2:14] # the predictors
D1 = WineData[which(Y==1),]
D2 = WineData[which(Y==2),]
D3 = WineData[which(Y==3),]
Train = rbind(D1[1:45,], D2[1:45,],D3[1:45,]) # user-specific training data
Test = rbind(D1[45:dim(D1)[1],], D2[45:dim(D2)[1],],D3[45:dim(D3)[1],]) # user-specific testing data
X = Train[,2:14]
Y = Train[,1]
X_test = Test[,2:14]
Y_test = Test[,1]
NetDA(X,Y,method=1,X_test) -> NetLDA
yhat_lda = NetLDA$yhat
Metrics(yhat_lda,Y_test)
#############
NetDA(X,Y,method=2,X_test) -> NetQDA
yhat_qda = NetQDA$yhat
Metrics(yhat_qda,Y_test)