Modeling, Imputing and Generating Synthetic Versions of Nested Categorical Data in the Presence of Impossible Combinations


[Up] [Top]

Documentation for package ‘NestedCategBayesImpute’ version 1.2.1

Help Pages

checkconstraints Checking a data matrix of households for the possible/impossible status under a predefined set of structural zeros.
checkconstraints_HHhead_at_group_level Checking a data matrix of households for the possible/impossible status under a predefined set of structural zeros.
checkSZ The new implementation of checkconstraints and will evently replace checkconstraints.
checkSZ2 Michael: Edit here
GetImpossibleHouseholds Generate the desired number of impossible households required to observe a given number of possible households.
groupcount Generate 2D count table for two integer-valued vectors.
groupcount1D Generate histogram count for an integer-valued vector.
households2individuals Convert a household data matrix to the corresponding individual member data matrix.
initData Initialize the input data structure.
initMissing Initilize the misising data structure from input data
initOutput Set the output structure for saving posterior samples of parameters.
initParameters Initialize the model parameters for the MCMC.
RunModel Run the mcmc sampler for the model.
sampleG Update household (group) level latent class indexes.
samplehouseholds Rcpp implementation for sampling household data without constraints.
sampleM Update individual level latent class indexes.
SampleMissing Sample and update missing data
UpdateAlpha Update alpha.
UpdateBeta Update beta.
UpdateLambda Update lambda.
UpdateLambdaWeighted Update lambda.
UpdateOmega Update omega and v.
UpdateOmegaWeighted Update omega and v.
UpdatePhi Update phi.
UpdatePhiWeighted Update phi.
UpdatePi Update pi and u.
UpdatePiWeighted Update pi and u.