fBracelets {Necklaces}R Documentation

Bracelets of a fixed configuration

Description

The function generates all the representatives of the bracelets corresponding to a fixed configuration.

Usage

fBracelets(pv=c(), bOut=FALSE, fn=1)

Arguments

pv

vector: the fixed configuration

bOut

boolean: if TRUE, the function produces a compact result

fn

integer: the first value of the alphabet, the default is 1

Details

The function generates all the representatives of the bracelets corresponding to a fixed configuration. If the second parameter (bOut) is set equal to TRUE, the function produces a compact result. The third parameter (fn) initializes the first value of the alphabet, which by default is equal to 1. For example, to generate all the representatives of the bracelets corresponding to the fixed configuration (2,1,1), run fBracelets(c(2,1,1)). In such a case the alphabet is {1,2,3}. Using the nPerm function of the kStatistics package, the function first generates all the permutations of the vector (1,1,2,3) corresponding to the configuration (2,1,1), that is

(I) (3,2,1,1), (2,3,1,1), (3,1,1,2), ..., (1,1,2,3) (12 in total)

Then the cBracelets function of the Necklaces package is called with input equal to each vector in (I). For each obtained list, only the representative survives. At the end all the representatives of the bracelets are printed, that are [1 1 2 3], [1 2 1 3].

Value

list

the list containing all the representatives of the bracelets corresponding to a fixed configuration.

Note

The function calls the cBracelets function in the Necklaces package and the nPerm function in the kStatistics package.

Author(s)

Elvira Di Nardo elvira.dinardo@unito.it,
Giuseppe Guarino giuseppe.guarino@rete.basilicata.it

References

Di Nardo, E. (2014) On a symbolic representation of non-central Wishart random matrices with applications. Jour. Mult. Anal. Vol.125, 121–135. (https://arxiv.org/abs/1312.4395)

Di Nardo, E., and Guarino., G. (2022) Necklaces and bracelets in R - (https://arxiv.org/abs/2208.06855)

Di Nardo, E., and Guarino., G. (2022) kStatistics: Unbiased Estimates of Joint Cumulant Products from the Multivariate Faa Di Bruno's Formula. The R journal - In press. (https://arxiv.org/abs/2206.15348)

Flajolet, P., and Sedgewick, R. (2009) Analytic combinatorics. Cambridge University press.

See Also

cBracelets, LyndonW, sBruijn

Examples

# Generate all the bracelets of the configuration (2,1,1) 
# corresponding to the vector (1,1,2,3)
fBracelets(c(2,1,1))  

# The previous result in a compact form
fBracelets(c(2,1,1),TRUE)

# The first value of the alphabet is set equal to zero
fBracelets(c(2,1,1),TRUE,0)



[Package Necklaces version 1.0 Index]